Office of Training &	
Higher Education	
Tigher Education	
	,
Pursuant to Contract DOT-FA79WA-4399	
Tursuant to Contract Do 1 1117 WIL 1377	

-Middle School Level -Secondary School Level

by

Aimee Dye

Pursuant to Contract Number DOT-FA79WA-4399

Department of Transportation Federal Aviation Administration Office of Training & Higher Education Aviation Education Division Washington, DC 20590

AHT-5-145-93

			•

	MVIII III III III III III III III III II	
III.	SCIENCE THEORY OF FLIGHT AVIATION APPLICATIONS OF SCIENCE	29
IV.	SOCIAL STUDIES	45
V.	BIBLIOGRAPHY	57

real world, modern-day applications of aviation technology and science.

Because of its high motivational value, aviation education can contribute measurably to the development of skills in the instructional program. The activities and experiences included here are intended to show how aviation materials and data may be used to motivate learning and how, by some of the suggested activities and materials, aviation can be taught while developing skill in the instructional areas.

This guide is designed especially for teachers who have had no special training in aviation education, for we believe that teachers need not be specialists in aviation to use aviation data and materials as a practical application of the things they teach in science, mathematics, social studies, English, etc. Teachers, however, do need practical ideas and suggestions on what aviation content to emphasize and how to obtain appropriate instructional materials.

While the original intent in writing this guide was to develop sections on both the middle school and senior high school levels, it was found that the wide range of interests at each level caused much over-lapping of content and activities. In view of this the two pieces of work have been consolidated. Each topic starts with very basic principles and shows varying levels of activities to illustrate these principles. The flexibility of this arrangement makes it possible for the teacher to accommodate the individual differences that range among the students in the class.

The content of the guide is organized into four curricular areas: language arts, math, science and social studies. Career exploration and other topics which are appropriate under more than one curricular area have been grouped arbitrarily. The four basic areas should not be considered as separate, unrelated aviation experiences. There is much correlation between areas and the teacher is encouraged to select from the activities and materials in any area that contribute to the achievement of the teaching objectives.

The material in the guide is not to be used as a course of study in aviation nor in the several instructional areas which it involves. It can most effectively be used to supplement curricular materials of all instructional areas with aviation and guide the teacher during such ventures.

Credit for the development of this publication should be given to Mary Jo Knouff, former Aviation Education Specialist in the Office of Public Affairs, Federal Aviation Administration. Further information about the FAA Education Program cam be obtained by writing to the FAA, Office of Training & Higher Education, Aviation Education Division, DOT/NASSIF Building, PL-100, 400 7th Street, SW, Washington, D.C. 20590.

PHILLIP S. WOODRUFF Director of Aviation Education

source of strong motivation for the achievement of language arts objectives.

Note: The materials and activities in this section are geared to the ability levels of students in the upper elementary grades. Related, supplemental activities can be found in the social studies section of this guide.

municate findings in a variety of ways.

- -To develop curiosity and interest in reading by exploring aviation fact and fiction in literature.
- -To develop discriminating and analytical thinking skills in viewing, listening and reading.
- -To develop sufficient skill to use the resources of a library or media center for information and individual reading.

educate, etc.).

- 4. Answer who, what, when, where questions after a visual presentation (picture, filmstrip or film).
- 5. Interview someone knowledgeable in the field of aviation. Determine appropriate questions to ask to gain the information needed.
- 6. Recall, in sequence, events of a story or poem read aloud or told.
- 7. Relate personal experiences with airplanes.
- Read about smoke signals used by the Indians.
 Use a set of diagrams which show some of the
 messages to report to the class.
- 9. Research skywriting. List some problems involved such as wind or clouds.
- 10. Invite a CB operator to your class and have the CB demonstrated for you.
- 11. Learn the special words and phrases that the airman uses. Enunciate them clearly.
- 12. Build a class crystal radio from a commercial kit or from "scratch." A radio shop or reference books will help you.
- 13. Check the newspaper for radio and television programs about aviation.
- 14. Use the yellow pages of the telephone directory to find aviation advertisements.
- 15. Determine the main idea after a visual presentation (film or filmstrip).
- 16. Differentiate between fantasy and reality when listening to and viewing productions.
- 17. Participate in a panel discussion on such topics as:
 - "The History of Aviation"
 - "Recent Developments in Rockets"
 - "Effects of Aviation on My Community"
- 18. Make a tape on your recording machine imitating "control tower to plane" conversations.
- 19. Identify purposes for oral communication by workers at the airport.
- 20. Compare filmed versions of aviation stories with written work: news program versus newspaper; movie versus book.
- 21. Identify and discuss various types of visual or

- 24. Give directions on how to get to the airport.
- 25. Call the weather bureau and listen to the forecast. Re-state in your own words.
- 26. Practice in the classroom the correct way to request an airline reservation.
- 27. Explain the action of the airfoil in keeping a plane aloft both with and without illustrations.

Materials and Resources

- 1. Talks from resource people. Radio or television programs.
- 2. Pencil and paper for note-taking to be used in reports.
- 3. Telephone directory yellow pages.
- 4. Current newspapers.
- 5. Photographs of different kinds of airplanes collected from airlines.
- 6. Readings:
 - a. Donnan and Donnan, From Raindance to Research, McKay, 1976.
 - b. Blau, Melinda E., What Ever Happened to Amelia?, Counterpoint, 1978.
 - c. Great Adventures That Changed Our World, Reader's Digest Association, 1978.
 - d. Ross, Frank, Jr., Space Shuttle: Its Story and How to Make a Flying Model, Lothrop, Lee and Shepard, 1979.
 - e. Davidson, Jesse, Famous Firsts in Aviation, Putnam, 1975.

7. Filmstrips:

- a. How Helicopters Fly.
- b. Controlling an Airplane.
- c. Jet Flight 923.
 - All from Scott Educational Division, Lower Westfield Road, Holyoke, MA, 01040.

8. Recordings:

a. "Spoken English" to accompany the Roberts English Series. Two records per grade level at all grade levels contain demonstration lessons on oral reporting, formal and informal telephone conversations, giving directions, inter-

- d. foreshadowing of later events.
- 2. Research ideas of flying as expressed by early man in mythology and legend:
 - a. The Greek god, Hermes.
 - b. Pegasus.
 - c. Phaeton.
 - d. Daedalus and Icarus.
 - e. Sinbad, the sailor, and his Roc.
 - f. Arabs and their flying carpets.
 - g. Simon, a Roman magician in the time of Rome, who tried to fly from a tower.
 - h. Wan-Hoo, the Chinese ruler who attached 47 large rockets to his chair to fly to the moon.
- 3. Compare ancient myths and legends about flight to modern tales about space creatures, little green men from Mars, etc.
- 4. Write original stories concerning "impossible" developments in aviation or space in the future.
- 5. Read one space-related story (real science, science fiction, or fantasy). Make notes on elements of fact and those of opinion. Give a written or oral report on the story.
- 6. Read one biography relating an act of bravery and heroism in aviation such as:
 - a. Amelia Earhart
 - b. Charles Lindbergh
 - c. Eddie Rickenbacker
 - d. Richard Byrd
 - e. James "Jimmy" Doolittle
 - f. Charles "Chuck" Yeager
- 7. Make a brief outline of the above biography:
 - i. Early life
 - ii. Accomplishments
 - iii. Later life
- 8. Use your outline to present an oral or written report.
- 9. Find out about the Japanese custom of flying kites to celebrate children.
- 10. Not all birds can fly. Use library reference books

٤٠

Readings:

- a. "Darius Green and His Flying Machine" by John T. Trowbridge, Best Loved Story Poems. Garden City Publishers, NY.
- b. Murry, Henry A., Myth and Myth Making, G. Broziller Company, NY.
- c. Bullfinch, Thomas, Mythology, Harper and Row, 1970.
- d. Falcon Force, Civil Air Patrol.
- e. Vent, Henry, Birds Without Wings.
- f. Gilleo, Alma, Air Travel From the Beginning, Children's Press, 1978.
- g. Hatfield, David D., Pioneers of Aviation, Aviation Book Company, 1976.
- h. Ault, Phil, By the Seat of Their Pants: The Story of Early Aviation, Dodd, Mead, 1978.
- Gibbs-Smith, Howard, Aviation, A Historical Survey From its Origins to the End of World War II, Wm. Clausen and Sons, Ltd., 1970.
- j. Mondey, David, The International Encyclopedia of Aviation, 1977.

2. Films:

- a. Icarus, and Daedulus, 6 min., animated, color. Sterling Productions, NY, 1964.
- b. Time Flies, Association Films, Inc., Executive Offices, 866 Third Avenue, NY 10022. Free Loan.
- c. Kites to Capsules, 5 min., b/w. FAA Film Service, c/o Modern Talking Picture Service, Inc., 5000 Park St., N., St. Petersburg, FL 33709.
- d. Oh, How We Flew, 27 min., b/w. Western Airlines, P.O. Box 92005, World Way Postal Center, Los Angeles, CA 90009.

3. Filmstrips:

- a. Balloons and Airships
- b. Milestones of Flight
 Both available from National Air and Space Museum, Smithsonian Institution, Washington, D.C., 20560.

to list references on aviation which might be obtained and which are not currently in your library pertaining to the above topics.

3. Read extensively on any one topic of aviation, using cross-references in the encyclopedia.

- 4. Prepare a list of aviation words and arrange them in proper alphabetical order. Determine the proper pronunciation from the dictionary. (Use such words as air, aileron, aeronautics, aerology, aviation, avionics, aerodynamics, altitude, altimeter, audio, etc.)
- 5. Use an atlas to find the latitude and longitude of five cities.
- 6. Look up flight records broken in the last ten years.
- 7. Locate the fiction and nonfiction materials on aviation.
- 8. List magazines currently in print which deal with aviation.
- 9. View films, filmstrips, and slides showing aircraft development.
- 10. Use the card catalog to copy the author card, title card and subject for a book such as:
 - a. Fat Man from Space by Daniel M. Pinkwater.
 - b. Jack the Bum and the UFO by Janet Schulman.
 - c. The Year of the Flying Machine by Genevive Foster.
- 11. Prepare a research paper listing all references, footnoting, etc.
- 12. Locate the following materials in your library.

- g. newspaper
 - h. current magazines
 - i. Who's Who
 - j. biographical reference books
 - k. literature reference books
 - l. vertical file
 - m. microfilm
 - n. listening centers

Materials and Resources

NOTE: Although most libraries share the same basic arrangement and materials for research, each library will have its own unique characteristics. Before beginning this section, check with your librarian to determine the availability of materials and time for library research.

Teaching Aids:

Flight, a series of 21 two-part sound filmstrips in color. Each of the 21 titles in the series comes as a kit which includes two full-color filmstrips with accompanying audio-cassette tapes, a User's Guide, reproducible student activity sheets including enrichment and evaluation items, a wall chart for illustrating the topic and a set of 8 library cards. May be ordered separately or in series from National Air and Space Museum, Smithsonian Institution, Washington, D.C., 20560.

AIR-A mixture of gases making up the atmosphere which surrounds the earth.

AIRFOIL—A streamlined surface designed in such a way that air flowing around it produces useful motion.

AIRPLANE - A mechanically-driven, fixed-wing, heavier-than-air craft.

AIRPORT—A tract of land or water for the landing and takeoff of aircraft. Facilities for shelter, supply, and repair are usually found there.

AIRSPEED—Speed of the aircraft relative to the air through which it is moving.

AIRWAY—An air route marked by aids to air navigation such as beacons, radio ranges and direction-finding equipment, and along which airports are located.

ALTIMETER—An instrument for measuring in feet the height of the airplane above sea level.

ALTITUDE—The vertical distance from a given level (sea level) to an aircraft in flight.

AMPHIBIAN PLANE - An airplane that can land on both land and water.

 $\begin{tabular}{ll} {\bf ANEMOMETER-Instrument}\ to\ measure\ speed\ of\ wind. \end{tabular}$

ASCEND-Climb.

ATMOSPHERE-Blanket of air surrounding the earth.

ATTITUDE—Position of the airplane relative to the horizon, i.e., a climbing attitude, straight-and-level attitude, etc.

AVIATION—A term applied to all phases of the manufacture and operation of aircraft.

BANK-A flight maneuver in which one wing points toward the ground and the other to the sky.

CHART An account of cloud bases.

CHART-An aeronautical map showing information of use to the pilot in going from one place to another.

CIRRUS-Type of high thin cloud.

COCKPIT—The portion of the inside of the airplane occupied by the person(s) operating the airplane, and containing the instruments and controls.

COMPASS-An instrument indicating direction.

CONTACT—Switching on the ignition of an aircraft engine. "Contact" is the word of warning that someone is about to turn on the ignition.

CONTROL TOWER-A glassed-in observation tower on the airport from which control tower operators observe and direct airport air and ground traffic.

COURSE—The direction over the earth's surface that an airplane is intended to travel.

CROSSWIND-Wind blowing from the side, not coinciding with the path of flight.

 $\begin{tabular}{ll} {\bf CUMULUS-Type} & of cloud formed in puffs or domeshaped. \\ \end{tabular}$

CURRENT-Stream of air; also, up-to-date.

DEAD STICK LANDING—Landing made without the engine operating.

DEGREE – $\frac{1}{2000}$ of a circle, or $\frac{1}{200}$ of a right angle.

DIVE-A steep angle of descent.

DRIFT—Deviation from a course caused by crosswise currents of air.

ELEVATION—The height above sea level of a given land prominence, such as airports, mountains, etc.

ELEVATORS—Control surfaces hinged to the horizontal stabilizer which control the the pitch of the

the trailing edge of the wing and used to increase lift at reduced airspeeds.

FLIGHT PLAN—A formal written plan of flight showing route, time enroute, points of departure and destination, and other pertinent information.

FORCE-A push or pull exerted on an object.

FREIGHT-Cargo.

FRONT (weather)—Boundary of two overlapping air masses. When cold air is advancing on warm air, it is said to be a cold front; warm air advancing on cooler air is a warm front.

FUSELAGE—The streamlined body of an airplane to which are fastened the wings and tail.

GEAR—The understructure of an airplane which supports the airplane on land or water; wheels, skis, pontoons. Retractable gear folds up into the airplane in flight. Gear that does not retract is called "fixed."

GLIDE - A motion of the airplane where the airplane descends at an angle to the earth's surface.

GLIDER - A fixed wing, heavier-than-air craft having no engine.

GRAVITY-Force toward the center of the earth.

HAIL—Lumps or balls of ice falling to the earth out of thunderstorms.

HANGAR-Building on the airport in which airplanes are stored or sheltered.

HAZARD-Obstructions or objects or threats to the safety of the passenger and aircraft.

HIGH PRESSURE AREA—Mass of air characterized by high barometric pressure.

HORIZONTAL-Parallel to the horizon.

HUMIDITY – Amount of invisible moisture in a given mass of air.

INSTRUMENTS—Dials or gauges by which information about the flight, airplane, or engine is relayed to the pilot. When the pilot flies the airplane

LIFT—An upward force caused by the rush of air over the wings, supporting the airplane in flight.

LOW PRESSURE AREA—Mass of air having low atmospheric pressure.

METEOROLOGY—The scientific study of the atmosphere.

MOISTURE-Water in some form in the atmosphere.

MONOPLANE - An airplane having one set of wings.

MULTI-ENGINE - Having more than one engine.

PARACHUTE — A fabric device attached to objects or persons to reduce the speed of descent.

PEDALS—Foot controls in the cockpit by which the pilot controls the action of the rudder.

PILOT-Person who controls the airplane.

PRECIPITATION—Any falling visible moisture; rain, snow, sleet, hail.

PRESSURE - Force in terms of force per unit area.

PROPELLER — An airfoil which the engine turns to provide the thrust, pulling the airplane through the air

RADAR—Beamed radio waves for detecting and locating objects. The objects are "seen" on the radar screen, or scope.

RAMP—Area outside of airport buildings where airplanes are parked to be serviced or to pick up and discharge passengers and cargo.

RUDDER-Control surface hinged to the back of the vertical fin.

RUNWAY — A surface or area on the airport designated for airplanes to take-off and land.

SEAT BELT—Belts attached to the seat which fasten around the pilot and passengers to hold them firmly in their seats in bouncy air and during take-offs and landings.

STATIONARY—Something that does not move is said to be stationary. A front along which one air mass does not replace another.

STRATUS-Layered clouds.

STEAMLINE - An object shaped to make air flow smoothly around it.

TACHOMETER—Instrument which measures the speed at which the engine crankshaft is turning, hence the propeller speed in r.p.m.'s (rounds per minute).

TAIL—The part of the airplane to which the rudder and elevators are attached. The tail has vertical and horizontal stabilizers to keep the airplane from turning about its lateral axis.

TAKE-OFF—The part of the flight during which the airplane gains flying speed and becomes airborne.

TERMINAL—Building on the airport where people board planes, buy tickets, and have their luggage handled. Flight services are frequently located at the air terminal.

THRUST-Forward force.

TRANSMITTER - Microphone, or part of the radio that sends the message.

VELOCITY—Speed.

VERTICAL-Ninety degrees from the horizon.

VISIBILITY—Distance toward the horizon that objects can be seen and recognized. Smoke, haze, fog, and precipitation can hinder visibility.

VORTEX-A circular, whirling movement of air forming a space in the center toward which anything caught in the vortex tends to move.

WEATHER—Condition of the atmosphere at a given time with respect to air motion, moisture, temperature, and air pressure.

WIND-Air in motion, important to aviation because it influences flight to a certain degree.

WIND SOCK—A cone-shaped, open-ended cylinder of cloth to catch the wind and show its direction.

WINGS—Part of the airplane shaped like an airfoil and designed in such a way to provide lift when air flows over them.

ZOOM—The climb for a short time at an angle greater than the normal climbing angle, the airplane being carried upward at the expense of airspeed.

III.	THE ALTIMETER ORIENTATION TEMPERATURE CHANGES WITH DIFFERENCES IN	17
	ALTITUDE	17
IV.	THE TACHOMETER ORIENTATION	18
	RATIO OF ENGINE RPM TO PROPELLER RPM	18
v.	TIME IN AVIATION MILITARY TIME	19
	TIME REQUIRED FOR A FLIGHT	. 19
	AVERAGE GROUND SPEED	19
	FUEL CONSUMPTION	. 20
VI	THE AIR SPEED INDICATOR	
٧	ORIENTATION	21
	TRUE AIR SPEED	. 21
	CORRECTIONS FOR WIND	21
	CORRECTIONS FOR BOTH WIND AND ALTITUDE	. 22
	MEASUREMENT APPLICATIONS	23
	FRACTIONS, DECIMALS AND PERCENT APPLICATIONS	24
IX.	GRAPH APPLICATIONS	25
	ANGLE AND TRIANGLE APPLICATIONS	
XI.	MATERIALS AND RESOURCES	. 27

First, there is an introduction to simple and most common aircraft instruments with suggestions for classroom or pupil activities. A group of sample problems is presented involving the use of the instruments.

Next, there is a section which outlines mathematics topics with illustrations of aviation applications. Following this there is a brief listing of problems to show the use of some of the principles and skills involved in the topic. Answers to the problems may be found on page 61.

Finally, there are listed three kinds of teaching and learning resources: mathematics textbooks, aviation materials, and films. Aviation problems frequently appear in mathematics textbooks. While the titles listed may not be in use in the school, single copies are usually available for use as supplemental references. Items listed in the aviation materials are available for purchase at low cost and will provide the teacher with many new resources for the class.

- -To understand the use of the compass in locating position.
- -To construct and interpret statistical graphs.
- -To use aeronautical charts.
- -To apply time, distance and rate formulas to find ground speed and fuel consumption.
- -To determine the ratio between engine speed and propeller speed.
- -To use and understand military time.
- -To gain skill in measurement through the use of aviation data and instruments.
- -To become aware of the basic mathematics requirements in the field of aviation.

- · 11 OII UIIC CIIAI (S. 1. Display sectional charts or, if possible, distribute one per four or five students.
- 2. Locate the Chart's symbol key. Copy the symbols for:
 - a. cities
 - b. small communities
 - c. single buildings
 - d. highways
 - e. railroads
 - f. radio towers
 - g. power lines

 - h. VOR stations
 - i. airports
- 3. Call attention to and discuss possible meanings of the colors on the chart.
- 4. On the legend of the chart find the scale which shows colors. Practice finding locations with various altitudes.
- 5. Discuss the importance to the pilot of the colors on the chart.
- 6. Choose two towns or cities and "fly" the route between them. Measure the mileage with a ruler. Write it in inches and centimeters.

B. Using the Scale of Miles

All aeronautical charts have been drawn to exact scale. The smallest scale is on an aeronautical planning chart; it is 80 miles to an inch. This is a ratio of approximately 1:5,000,000, which means that one inch on the chart represents 5,000,000 inches on the ground. The largest scale is on the sectional chart; it is 8 miles to an inch. This is a ratio of approximately 1:500,000.

Example: What is the distance between two airports, if they are six inches apart on an aeronautical chart which has a scale of 32 miles to one inch?

Solution: 1 inch on the chart represents 32

number of inches.

 $340 \div 80 = 4\frac{1}{4}$ inches

PROBLEMS: Find the missing number in each of the following problems:

	Distance on	Distance on
Scale	Chart	Ground
1. 1 in. = 16 mi.	4 in.	?
2. $1 \text{ in.} = 16 \text{ mi.}$	$3^{1/2}$ in.	?
3. 1 in. $= 80$ mi.	$4\frac{3}{4}$ in.	?
4. 1 in. = 32 mi.	?	100 mi.
5. 1 in. $= 8$ mi.	?	75 mi.
6. ?	$9^{1/2}$ in.	304 mi.
7. ?	7% in.	114 mi.
8. 1 in. = 32 mi.	$5^{11}/_{16}$ in.	?

- 9. If the scale of a chart is 1:1,000,000, what is the approximate number of miles on the ground which is represented by one inch on the chart?
- 10. If the scale of a chart is 32 miles to one inch, what is the approximate ratio of the scale?

C. Using the Chart to Find Directions.

The scale on a chart is easily used to find the distance between any two places on the chart. Use a ruler to measure between the two places. Then change the measurement to miles by the use of the scale.

Example: Cameron is 1% inches from Vinson on a chart which has been drawn on a scale of 1 inch to 8 miles. What is the distance between Cameron and Vinson?

Solution: Multiply 1% by 8 to find the number of miles. $1\% \times 8 = \frac{15}{8} \times 8 = 15$ miles.

Practice Chart

Six cities are shown on a practice chart which has been prepared for use in the problems

Notice the scale which is shown beneath the chart.

^{*}See availability, page 41.

Reed				Coe	
0	16	32	48	64	
	1 in	1 = 32	niles		

PROBLEMS: Find the distance in inches on the chart and the distance in miles on the ground for the following problems.

? ? 8. Bates to Evert ? 9. Milden to Evert ? 10. Reed to Milden ? 11. Use the practice chart and a scale of 1 inch = 64 miles to find the distance between

7. Bates to Minden

Bates and Reed. 12. Use a scale of 1 inch = 16 miles to find the distance between Coe and Milden.

- compasses. Show both mounted and unmounted types.
- 2. Examine and discuss the pocket compass hikers carry.
- 3. Explain the difference between magnetic north and true north.
- *4. Draw a large circle. Make a vertical line through the center and an intersecting horizontal line through the vertical line. Label the points N, S, W, and E. These represent the cardinal points on a compass.
- Intercardinal points are points between the cardinal points. Locate northwest, northeast, southwest and southeast on the circle.
- 6. Draw a circle. Draw a vertical line through the circle. Label the points 0° and 180°. Add points 90° and 270° by drawing a horizontal line through the circle, intersecting the vertical line. Complete the circle by marking points at intervals of 30 degrees. Determine that a circle has 360 degrees. Compare this drawing to a compass dial.

- it, allowing the compass heading (direction being flown) to show in the compass "window."
- 10. Practice reading the magnetic compass.
- 11. Construct simple, working compasses.
- B. Using the Compass to Find Directions. PROBLEMS: Find the number of degrees for each of the directions below.

	Number o
Direction	Degrees
1. North	٥°
2. East	?
3. South	?
4. West	?
5. Northeast	?
6. Southeast	?
7. Southwest	?
8. Northwest	,

- 9. What direction is shown by a compass reading of 360°?
- 10. What angle of flight is taken by a plane which flies exactly halfway between west and northeast?

NOTE: More complicated problems on use of the magnetic compass may be found in *Pilot's Handbook of Aeronautical Knowledge*, FAA, 1979.

^{*}A good series of lessons on fundamental principles with worksheets and pictures for duplication is included in *A viation for the Elementary Level*, Beech Aircraft Corporation, Wichita, KS, 67201.

- 4. Construct altimeter dials using paper plates.
 Attach construction paper hands with brass paper fasteners.
- 5. Practice reading and setting the paper "altimeters."
- 6. Make rough sketches of objects such as office buildings, towers, mountains, etc. and their heights above sea level. Solve problems concerning:
 - a. the altitude a plane must fly in order to be 1,000 feet, 5,000 feet, etc. over each object.
 - b. how high over each object a plane will be if it flies at 2,000 feet; 3,200 feet; 4,500 feet, etc.

B. Temperature Changes with Differences in Altitude.

The average loss of heat is about 3.5 degrees Fahrenheit for each thousand feet increase in altitude up to about seven to ten miles.

Example: If the temperature on the ground is

PROBLEMS

Ground	Temperature	Air
Temperature	at:	Temperature
1. 70°	3,000 feet	?
2. ?	4,000 feet	56°
3. 83.5°	7,000 feet	?
4. ?	20,000 feet	0°
5. 88.5°	?	76°
6. 0°	2,000 feet	?
7. 74.5°	11,000 feet	?
8. 65°	12,000 feet	?
	•	

- 9. If the temperature is 22° at 21,000 ft. altitude, what is the ground temperature?
- 10. What is the temperature at 17,000 ft. altitude when the ground temperature is 92°?

NOTE: Problems dealing with altimeter corrections to compensate for atmospheric changes in pressure and temperature may be found in the Pilot's Handbook of Aeronautical Knowledge, FAA, 1979.

- tachometer.
- Construct tachometer dials from paper plates and attach hand with a brass paper fastener.
- 4. Practice reading tachometers at various settings.
- 5. Relate revolutions per minute (RPM) to speeds on a stereo turntable such as 33½, 45 and 78 RPM.
- 6. Discuss reasons why automobiles have only one odometer, but airplanes may have two or more tachometers.
- B. An airplane's engines often run faster than its propellers. For example, on one airplane, the most efficient engine speed is 3,000 RPM, while the most efficient propeller speed is about 1,500 RPM. A set of reduction gears permits the engine to run at 3,000 RPM while the propeller turns at 1,500 RPM. When this happens, the ratio of engine RPM to propeller RPM is two to one (2:1). Other ratios can range from 4:3 to 3:1.

Example: If an airplane runs at 3780 RPM, and the ratio of engine speed to propeller speed is

Solution: Divide 3050 by 1220 to find the ratio. $3050 \div 1220 = 2.5$

The ratio is 2.5 or 2.5:1. This ratio may also be written as 5:2.

PROBLEM: Find the missing number in each of the problems.

		Ratio of
		Engine Speed
	Propeller	to Propeller
Engine Speed	Speed	Speed
1. 3160 RPM	?	2:1
2. 3400 RPM	?	5:2
3. ?	1450 RPM	3:2
4. ?	1250 RPM	3:1
5. 3150 RPM	1575 RPM	?
6. 2800 RPM	1680 RPM	?
7. 1800 RPM	?	4:3
8. ?	1470 RPM	16:7
		2001

- 9. What is the ratio between an engine speed of 2910 RPM and a propeller speed of 1940 RPM?
- 10. If an airplane propeller turns at 1120 RPM and the ratio of engine speed to propeller speed is 12:7, what is the engine speed?

units. The unit begins at 0001 hours after midnight and continues to the following midnight which is 0000 hours. Twelve o'clock noon is 1200 hours. Time after noon begins at 1300 hours and continues to midnight.

	Standard	Military
Examples:	Time	Time
	9:00 a.m.	0900 hours
	10:30 a.m.	1030 hours
	12:00 noon	1200 hours
	1:15 p.m.	1315 hours
	6:49 p.m.	1849 hours
	10:30 p.m.	2230 hours
	12:00 p.m.	0000 hours

PROBLEMS:

Change the standard time to military time.

1. 1:40 a.m.	6. 12:30 p.m.
2. 5:16 p.m.	7. 11:49 p.m.
3. 7:39 p.m.	8. 2:32 p.m.
4. 6:47 p.m.	9. 12:20 p.m.
5. 8:35 p.m.	10. 11:43 p.m.

Change the military time to standard time.

nange the mintary	time to standard t
1. 0430 hours	6. 2041 hours
2. 1619 hours	7. 1022 hours
3. 0003 hours	8. 2347 hours
4. 1317 hours	9. 0103 hours
5. 2148 hours	10. 1508 hours

B. Time Required for a Flight

Example: What will be the length of a flight of 329 miles at an average speed of 94 MPH? Solution: Divide 329 by 94.

 $329 \div 94 = 3\frac{1}{2}$ hours = 3 hours, 30 minutes

PROBLEMS: Find the time required for flights in problems such as the following:

	Average	
Distance	Ground Speed	Time
1. 275 miles	110 MPH	?
2. 180 miles	45 MPH	?
3. 585 miles	130 MPH	?
4. 2475 miles	275 MPH	?
5. 1875 miles	600 MPH	?

quired for the inght.

C. Average Ground Speed.

The problems in this section are applications of the familiar TIME, RATE and DISTANCE formulas which can be used in problems of automobiles and trucks as well as aircraft. Average ground speed is the RATE in these problems:

RATE
$$\times$$
 TIME = DISTANCE
DISTANCE \div TIME = RATE
or $\frac{\text{DISTANCE}}{\text{TIME}}$ = RATE

DISTANCE + RATE = TIME

or
$$\frac{\text{DISTANCE}}{\text{RATE}} = \text{TIME}$$

Example: What is the average ground speed for a flight of 400 miles in 3 hours, 20 minutes? Solution: Divide 400 by $3^{1/3}$ hours:

 $400 \div 3\frac{1}{3} = 400 \div \frac{10}{3} = 400 \times \frac{3}{10} = 120 \text{ MPH}$

Average

PROBLEMS: Find the average speed for each of the flights in problems as the following:

		Ground
Distance	Time	Speed
1. 285 miles	3 hours	?
2. 780 miles	6½ hours	?
3. 800 miles	5½ hours	?
4. 1260 miles	4 hours, 40 minutes	?
5. 2875 miles	6 hours, 15 minutes	?
6. 675 miles	$4^{1/2}$ hours	?
7. 594 miles	3 hours, 18 minutes	?
8. 245 miles	2 hours, 27 minutes	?
9. What is the	ground speed for a	flight of

- 9. What is the ground speed for a flight o 595 miles in three and one-half hours?
- 10. An airplane flies 1104 miles in 4 hours, 36 minutes. What is the average ground speed?

Solution: Change two hours, twenty minutes to 140 minutes. Multiply 14% by 6 to find the amount of fuel used.

$$\frac{140}{60}$$
 × 6 = 14 gallons.

PROBLEMS: Find the number of gallons of fuel which will be used in flights.

	$Fuel\ Con$ -	Amount
	sumption	$of\ Fuel$
Flying Time	$Per\ Hour$	Used
1. 3 hours, 30 minutes		
(3.5)	6 gallons	?
2. 5 hours, 20 minutes	0	·
(5.33)	12 gallons	?
3. $4\frac{1}{2}$ hours (4.5)	5 gallons	?
4. 4 hours, $22\frac{1}{2}$ minutes	ŭ	
(4.375)	20 gallons	?
5. 6 hours, 10 minutes	G	•
(6.17)	40 gallons	?
6. 2 hours, 24 minutes	64	•
(2.4)	5 gallons	?
7. 3 hours, 12 minutes	- 8m	•
(3.2)	15 gallons	?
8. 5 hours, 5 minutes	To guilons	•
(5.08)	18 gallons	?
9. How much gasoline	will be concur	
flight of three hours	forter reinsel	ied in a
engine uses nine	, forty minute	s 11 the
engine uses nine $(3.67 \times 9 = ?)$	gamons per	hour?
	:1.4 . 6 1	•
10. An airplane makes a fl	ignt of six hour	s, forty-
two minutes. The engin	ine uses an ave	erage of
18 gallons of gasoline	per hour. Ho	w much
gasoline will be consu	med during the	flight?

38.57 gallons = 75% of total fuel to be carried. Divide 38.57 by .75 to find the total amount of fuel.

 $38.57 \div .75 = 51.96$ gallons.

PROBLEMS: Find the number of gallons of gasoline needed to include a 25% fuel reserve for the flights.

Flying Time 1. 3 hours,	Fuel Con- sumption Per Hour	of Fuel	25%
40 minutes 2. 2 hours,	9 gallons	?	?
30 minutes 3. 2 hours,	8 gallons	?	?
24 minutes 4. 4 hours,	5 gallons	?	?
20 minutes 5. 6 hours,	12 gallons	?	?
50 minutes	24 gallons	?	?
Find the number of include a 20% fuel	f gallons of g reserve for	gasoline n the fligh	eeded to
6. 4 hours 7. 3 hours,	6 gallons	?	?
30 minutes 8. 3 hours,	9 gallons	?	?
20 minutes 9. 8 hours,	15 gallons	?	?
20 minutes 10. 4 hours,	24 gallons	?	?
10 minutes	18 gallons	?	?

- 3. Discuss differences of the airspeed indicator and automobile speedometer in terms of:
 - a. what is being measured
 - b. the units of measurement used
 - c. relationship to actual speed
- 4. Practice "reading" airspeed indicator.
- 5. Explain the purpose of the green arc, white arc, yellow arc, and red line.
- 6. Determine the "caution range" of the airspeed indicator.
- 7. Review the relationship between miles and nautical mile (1 knot = 1½ statute miles per hour)

B. Corrections to Indicated Air Speed for Differences in Altitude

The *indicated air speed* on the airspeed indicator will seldom be the actual speed of the airplane. Airspeed indicators show airspeed at sea level. As the plane rises in altitude the air becomes thinner and it does not offer as much pressure against the airspeed indicator. Therefore, the indicator reads less than the *true air speed*.

True air speed can be obtained by adding two percent of the *indicated air speed* for each thousand feet of altitude.

Example: What is the true air speed of a plane which flies at 5000 feet altitude if the *indicated* air speed is 150 miles per hour?

Solution: The correction is two percent per thousand feet of altitude. Since the altitude is 5000 feet, multiply 2% by 5.

 $2\% \times 5 = 10\%$

10% of the indicated air speed is 150 miles per hour is $150 \times .10 = 15$ miles per hour.

True air speed is 150 + 15 = 165 miles per hour.

PROBLEMS: Find the true air speed in problems such as the following:

		Indicated	True
	Altitude	$Air\ Speed$	Air Speed
1.	2000 feet	100 MPH	?
2.	3500 feet	110 MPH	?

- flies at an altitude of 7000 feet with an indicated air speed of 230 MPH?
- 10. What is the true air speed of a plane which flies at 16000 feet with an indicated air speed of 312 MPH?

C. Corrections for Wind.

An airplane is carried along with movements of the air in which it flies. Because the air is nearly always in motion, the speed of the plane over the ground may be either more or less than the *in-dicated air speed*.

Ground speed can be obtained by adding the wind speed to the *indicated air speed* whenever the plane flies with the wind. This is called a tail wind.

Example: What is the ground speed if the indicated air speed is 110 MPH and the plane is flying with a tail wind of 20 MPH?

Solution: Ground speed is 110 + 20 = 130 MPH. Ground speed can also be obtained by subtracting the wind speed from the *indicated air speed* whenever the plane is flying against the wind. This is called a head wind.

Example: What is the ground speed if the indicated air speed is 110 MPH and the plane is flying against a wind of 20 MPH?

Solution: Ground speed is 110 - 20 = 90 MPH.

PROBLEMS: Find the ground speed in such problems as the following:

Indicated	Head	Tail	Ground
Air Speed		Wind	Speed
1. 115 MPH		25 MPH	?
2. 120 MPH	15 MPH		?
3. 160 MPH		27 MPH	?
4. 70 MPH		15 MPH	?
5. 95 MPH	13 MPH		?
6. 160 MPH	27 MPH		?
7. 105 MPH	5 MPH		?
8. 260 MPH	40 MPH		?

9. What is the ground speed of an airplane

and Wind.

Corrections must be made for both altitude and wind to find the actual ground speed of an airplane.

Example: An airplane flies at 6000 feet altitude into a head wind of 30 MPH at an indicated air speed of 120 MPH. What is its ground speed?

Solution: The correction for altitude is 2% per thousand feet of altitude. Since the altitude is 6000 feet, $6 \times 2\% = 12\%$. Multiply the indicated air speed of 120 MPH by .12.

 $120 \times .12 = 14.40 \text{ MPH}$

1. Suud leet	IZU MPH		15 MPH	?
2. 4000 feet	150 MPH	20 MPH		?
3. 8000 feet	160 MPH		25 MPH	?
4. 3350 feet	165 MPH		19 MPH	?
5. 4700 feet	215 MPH	27 MPH		?
6. 6500 feet	170 MPH	30 MPH		?
7. 5000 feet	110 MPH	40 MPH	:	?
8. 7000 feet	140 MPH		35 MPH	?

- 9. What is the ground speed of an airplane which flies at 7500 feet at an indicated air speed of 135 MPH into a head wind of 30 MPH?
- 10. A plane flies with a 40 MPH tail wind at an indicated air speed of 120 MPH at 4000 feet. What is the ground speed of the airplane?

fuselage, etc.

- B. Square Measure
 - 1. Areas of wings having different shapes
 - 2. Areas of airports, runways and taxi strips
- C. Volume Measure
 - 1. Fuel capacity
 - 2. Oxygen tank capacity
 - 3. Cargo space
- D. Angular Measure
 - 1. Speed of propeller rotation
 - 2. Wind drift angle
 - 3. Heading
 - 4. Angle of climb
 - 5. Glide path
 - 6. Sweepback of wing
 - 7. Propeller pitch
- E. Force and Pressure Measure
 - 1. Lift

- 3. Time spent en route (13113)
- G. Rate of Speed
 - 1. Air speed
 - 2. Ground speed
 - 3. Wind speed
- H. Temperature
- - 1. Engine temperature
 - 2. Free air temperature

SAMPLE PROBLEMS:

- 1. The area of a wing is 1053/8 square feet. Change the fraction of a square foot to square
- 2. An airline flight from New York to Los Angeles takes 7 hours and 55 minutes. If the plane leaves New York at 9:30 a.m. Eastern Time, what time would it arrive in Los Angeles, which is Pacific Time?

6. Altitude

- B. Specifications of various aircraft may be compared:
 - 1. Maximum airspeed in level flight
 - 2. Maximum effective ceiling
 - 3. Take-off speed
 - 4. Landing speed
 - 5. Horsepower of engine

Miles Per
Hour: 1 8 200 158½ 87.25
Feet Per
Second: 1.467 ? ? ? ?

2. A U.S. gallon is .8327 of a British Imperial gallon. If the fuel capacity of a transport plane is 3278 U.S. gallons, how many British Imperial gallons does it hold?

	đ					
SAMPLE PROBLEMS:	lbs/sq. ft.	16	35	56	78	95
1. $K = .86845$ is the formula for changing statute	$\mathbf{V}_{\mathtt{m}}$					
miles per hour to knots. Make a graph of this	M.P.H.	?	?	?	?	?

G. Direction of Hight	` 060°	Plus 10°	70°	- 3°	67°
SAMPLE PROBLEMS:	325°	Minus 10°	?	+ 5°	?
 If two airplanes leave the same airport, one fly- ing a course of 195° and the other a course of 	165°	Minus 14°	?	- 4°	?
065°, what is the size of the angle between their courses?	355°	Plus 15°	?	- 3°	?

- New York: American Book Company, 1981.
- Ulrich, James F. and others. Geometry, 2nd ed., New York: Harcourt Brace Jovanovich, Inc., 1972.
- Welchons, A.M. and others. *Plane Geometry*. Massachusetts: Ginn and Company, 1981.

2. Aviation Materials:

- Boyd, K.T. Air Transport Pilot: A Comprehensive Text and Workshop for the AIP Written Exam. Iowa State University Press, 1978.
- Buchanek and Bergin. Piloting/Navigation With the Pocket Calculator. New York: Tab Books, Inc., 1977.
- Christy and Erickson. Engines for Homebuilt Aircraft. New York: Tab Books, Inc., 1978.
- Elliott and Gurney. Pilot's Handbook of Navigation. Los Angeles: Aero Publishers, 1977.

- University Press, 1978.
- Morrison, James W. Instrument Pilot Examination. New York: Arco Publishing Company, 1979.
- National Ocean Survey, Distribution Division C-44), 6501 LaFayette Avenue, Riverdale, Maryland 20840. Aeronautical Charts, Catalog of.
- Smith, Robert T. Your FAA Flight Exam—Private and Commercial Rev. Ed. New York: Tab Books, Inc., 1978.

3. Films:

- Geometry, Curves and Circles. Color Film Associates, New York.
- Geometry: Points, Angles, Lines . . . and Tigers. Bailey Films.
- The Airplane Changes Our World Map. Encyclopedia Britannica Films.

	v			

AIRFRAME CONTROL SURFACES	
IV. POWER FOR FLIGHT INTERNAL COMBUSTION ENGINES JET ENGINES	36 36 36
V. AVIATION APPLICATIONS OF SCIENCE BERNOULLI'S PRINCIPLE	38
GRAVITATIONINERTIA	. 38
NEWTON'S LAW OF ACCELERATION	38
MOMENT OF FORCE	38
RESULTANT FORCES	38
NEWTON'S THIRD LAW OF MOTION	38
FRICTION	38
TYPES OF FORCES	39
SPEED OF SOUND	39
ARCHIMEDES' PRINCIPLE	39
PASCAL'S LAW	39
BOYLE'S LAW	39
CHARLES' LAW	39
TEMPERATURE	39
CAUSES OF WEATHER	40
GENERAL INFLUENCES ON AVIATION	41
APPLICATIONS OF PRINCIPLES OF ELECTRICITY	41

are also a good source of materials and resources.

In the development of the topic, an attempt has been made to start with very basic principles and show varying levels of activities to illustrate these principles. It is suggested that the teacher select from the activities and materials in this section for class use whenever they are appropriate, although the entire contents can be used to good advantage, and the format can be followed closely if this is desired.

Thrust

- To understand forces giving motion:
 Internal combustion
 Jets
 Rockets
- -To understand the purpose and use of the parts of a plane.
- -To develop an understanding of the basic principles of science and their applications to the flight of a plane.
- -To understand general principles which underlie causes of weather and climate conditions.
- -To recognize that all basic principles of electricity are involved in the operation of aircraft.

- a. Drop a sheet of paper from a ladder and time its drop in minutes or seconds.
- b. Roll or crumple a second sheet of paper and drop it from the same height. Time its drop.
- c. Cut a third sheet of paper in half lengthwise. Lap the cut edge over to form a wide cone. Drop it from the same height and measure its drop.
- d. Make a paper ice cream cone by rolling a fourth sheet of paper and taping the outer edge. Drop it from the experimental spot and time it.
- e. Discuss the results and generalizations that can be made.
- 3. Demonstrate the "braking action" of air. Drag a clothespin through the air (or water), then attach a bucket (ketchup bottle cap) and repeat. Notice the additional drag.
- 4. Discuss the speed of objects as they move through air and water.
- 5. Show air pressure. Place a medicine dropper in a glass of water. Squeeze and note that air leaves. Release and note that water replaces lost air. Hold dropper in the air and note that air pressure keeps water in the tube.
- 6. Identify the layers of air and some characteristics of each.
- 7. Explain the difference in the terms air and atmosphere.
- 8. Make a circle graph showing the composition of air.
- 9. Introduce the three forms of matter: solid, liquid and gas.
- 10. Explain similarities of characteristics of air and water such as weight, mass, pressure, density, etc.
- 11. Hold a strip of paper about 2 inches by 8 inches between the thumb and forefinger; let the paper curve over the top of the hand to form an airfoil. Blow over the top of the curved surface and observe the paper. Elicit generalizations about

- changes in the balloons after a day or two. Discuss reasons for the changes.
- 15. Determine how air pressure is measured.
- 16. Locate pictures of barometers and explain how they work.
- 17. Construct a simple barometer.
- 18. Fill balloons with helium (available at a welder's supply store). Attach a postcard with your name and address requesting that the finder return the card. Release the balloons on a windy day.
- 19. Relate observations of air in action such as leaves blowing, kites flying, smoke rising, curtains blowing, doors slamming, wind cooling, wet clothes drying, etc.
- 20. Blow soap bubbles. Discuss what they are, why they break, etc.
- 21. Examine and manipulate a bicycle pump or perfume atomizer. Feel the stream of air as the plunger is pushed in.

Materials and Resources

- 1. Films:
 - a. How Air Helps Us, 11 minutes, color. Coronet Films, 1963.
 - b. Learning About Air, 11 minutes, color. Paramount Films, 1972.
 - c. Nothing But Air, 11 minutes, black and white, Encyclopedia Britannica Films, 1949.
- 2. Readings:
 - a. Use any good elementary or junior high school General Science book depending on the level of the student.
 - b. Aviation Science Activities for Elementary Grades, FAA.
 - c. Falcon Force, Civil Air Patrol.
 - d. Martin, Elizabeth F., Aerospace Activities for Learning and Fun, University of South Alabama, 1978.
- 3. Materials for experiments:
 - a. Notebook paper
 - b. Clothespin

- the weight of the same objects on the earth and
- 5. List some objects that temporarily defy gravity: birds, kites, blowing leaves, gliders, airplanes, rockets, etc.
- 6. Draw shape of an airfoil and lines showing the airstream over and under it. Label areas of low pressure and high pressure. Ask: How does air lift kites, leaves, etc.?
- 7. Identify Lift as the force that opposes gravity.
- 8. Recall the action of wind against the hand when it was put outside the window of a moving automobile. What caused the drag against the hand?
- 9. Identify Drag as the force that opposes lift.
- 10. Demonstrate Newton's Laws.
 - a. First Law: Show that a small model car needs to be pushed to start it moving and that it will keep moving until something stops it (air, friction or another object).
 - b. Second Law: Push a small model car with varying amounts of force to show that speed of movement is related to thrust.
 - i. Relate other examples of thrust; tossing a baseball, pedaling a bicycle, "shooting" a marble, etc.
 - c. Third Law: Demonstrate action and reaction by inflating a balloon and suddenly releasing it. Discuss its actions.
- 11. Make paper airplanes and fly them. Discuss the action of the four forces: gravity and lift, thrust and drag.
- 12. Use an encyclopedia to make a report on "Why an Airplane Flies."
- 13. Study pictures of airplanes to locate airfoils.
- 14. Draw an airplane. Use arrows to show where lift, gravity, thrust and drag occur.

- b. Gravity—Weight and Weightlessness, 11 minutes, color. Film Associates, 1963.
- c. The Force of Gravity, 10 minutes, black and white, Young American Films, 1949.
- d. Making Things Move, 11 minutes, color. Encyclopedia Britannica Films, 1963.
- e. How An Airplane Flies, 56 minutes, color. Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, IN 46239. Free loan.

2. *Kits*:

- a. Aviation Education, Cessna Aircraft Company, Air Age Education Department, P.O. Box 1521, Wichita, Kansas 67201.
- b. Aviation for the Elementary Level, Beech Aircraft Corporation, Wichita, Kansas 67201.
- 3. Filmstrip:

Lift and Thrust, Scott Educational Division.

- 4. Readings:
 - a. Use any good encyclopedia.
 - b. Aviation Science Activities for Elementary Grades, FAA.
 - c. Falcon Force, Civil Air Patrol.
 - d. Demonstration Aids for Aviation Education, FAA.
- 5. Materials for experiments:
 - a. Two different size and weight balls such as gold ball and rubber ball.
 - b. Model car.
 - c. Balloon.
 - d. Paper airplane pattern and paper.
 - e. Pictures of airplanes.
 - f. Small funnel and ping-pong ball.
- 6. Teaching Aids:

History of Flight Tour, National Air and Space Museum, Smithsonian Institution, Washington, D.C. 20560.

B. Control Surfaces

- 3. Introduce the term *control surfaces* as parts which control the stream of air over parts of the plane.
- 4. Use a model airplane to identify the control surfaces of the wing: flaps and ailerons. Raise and lower the flaps and illustrate with a chalkboard drawing the effect of each of these on the airstream. Explain how these are used in takeoff and landing.
- 5. Use a model airplane to identify the ailerons on the wings. Use a chalkboard drawing to demonstrate the effects that moving the ailerons has on the air and, in turn, the plane.
- 6. Construct model gliders from kits or balsa wood. Experiment with raising the right aileron and lowering the left. Launch the glider and observe its movement through the air. Then raise the left aileron and lower the right before launch. Compare the results of the two trial launches.
- 7. Use the model airplane or glider to identify parts of the tail assembly: rudder, horizontal stabilizer and elevators.
- 8. Use the model gliders made by students. Raise the elevators and launch the glider. Bring the elevators level with the stabilizer and launch the glider. Discuss the results.
- 9. To observe the effects of moving the rudder, bend the rudder to the left and launch the glider. Then turn the rudder to the right and launch. Notice the directions the glider takes.
- 10. Experiment with the reaction produced by a combination of controls:
 - a. Left aileron down, right up, rudder right, elevators down.
 - b. Left aileron down, right up, rudder right, elevators up.
 - c. Left aileron up, right down, rudder left, elevators down.
 - d. Left aileron up, right down, rudder left, elevators up.
- 11. Have students record their observations of the

- and the surface controls.
- 14. Make paper gliders and experiment with control surfaces.
- 15. Use the model airplane or glider to practice basic movements of an airplane:
 - a. Pitch—the motion of the plane around the lateral axis.
 - b. Yaw—the movement of the plane around the vertical axis.
 - c. Roll—motion of the plane around the longitudinal axis.
- 16. Discuss camber and chord of an airfoil and how they may differ.

Materials and Resources

- 1. Readings:
 - a. Philpott, Bryan, Making Model Aircraft, Scribner, 1978.
 - b. Dilly, Martin, This is Model Flying. Transatlantic Arts, 1976.
 - c. Keen, Martin L., How It Works, Grossett and Dunlap, 1976.
- 2. Films:
 - a. How an Airplane Flies, 56 minutes, color. Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, IN 46239. Free loan.
- 3. Filmstrip:
 - a. Controlling An Airplane, Scott Educational Division, Lower Westfield Road, Holyoke, MA 01040.
- 4. Demonstration Aids:
 - a. Aerospace Education Teaching Aids, Ruth Gold West, 143 S. Gable Road, Paoli, PA 19301. (\$2.50)
 - b. Aviation Science Activities for Elementary Grades, FAA.
 - c. Delta Dart Teachers' Guide, FAA.
- 5. Models:

Inexpensive balsa wood gliders may be ordered from:

- a. Gulliow's, Wakefield, MA 01880.
- b. North Pacific Products, Inc., Bend, OR 97701.

- engine by comparing it to movements involved in riding a bicycle.
- 4. Make a study of the strokes in a piston engine.
- 5. Construct a simple engine motor model.
- 6. Discuss the function of a carburetor.
- 7. Make a model to show the action of a carburetor.
- 8. Make a diagram of an internal combustion engine.
- 9. Make diagrams showing the four-stroke engine.
- 10. Report on the types of propellers.
- B. Jet Engines: Engines that provide thrust based on the principle of equal, opposite reaction to action.
 - 1. Jets provide thrust with reaction engines.
 - 2. Review Newton's Third Law of Motion.
 - Inflate a balloon and suddenly release it. Discuss action of reaction in view of its motion.
 - 4. Make a drawing of a ramjet engine.
 - 5. Discuss the functions of the sections of a ramjet engine:
 - a. air intake
 - b. combustion chamber
 - c. exhaust outlet
 - 6. Compare the functions of a ramjet to the five-cycle event of a reciprocating engine.
 - 7. Make a drawing of a turbojet.
 - 8. Compare the turbojet to the ramjet engine.
 - 9. Discuss the purpose of the turbine and the compressor.
 - 10. Make a drawing of a turboprop engine.
 - 11. Compare the turboprop engine to the turboiet.
 - 12. Explain the action of the propeller in a turbojet.
 - 13. State some differences in a turbine engine and a reciprocating engine.
 - 14. Explain how the amount of thrust is measured in jets.
 - 15. Name four types of jet engines and the advantages of each.

Avenue, Detroit, Michigan. 2. Teaching Aids:

 a. Aerospace Education Teaching Aids, Ruth Gold West, 142 S. Gable Road, Paoli, PA 19301.

B. Jet Engines

- 1. Readings:
 - a. Jet Engines. The General Electric Corporation, Dept. 2-119, Schenectady, NY.
 - b. Aerospace: The Challenge, Civil Air Patrol.
 - c. Boyne and Lopez, The Jet Age: Forty Years of Jet Aviation, Smithsonian Press, 1979.
 - d. Wilson and Scagell, Jet Journal, Viking, 1978.
- 2. Film:
 - a. How The Jet Engine Works, American Gas Association, Educational Services, 1515 Wilson Boulevard, Arlington, VA 22209.
- 3. Filmstrips:
 - a. Rocket Power, Scott Education Division, Lower Westfield Road, Holyoke, MA 01040.

- 5. Discuss uses of rocket engines; experimental aircraft, satellites, space exploration.
- 6. Review Newton's Third Law.
- 7. Compare reaction engine with reciprocating engine.
- 8. Discuss the function of:
 - a. combustion chamber
 - b. exhaust nozzle
 - c. liquid fuel intake
- 9. Discuss fuel mixture for the liquid fuel rocket.
- 10. Discuss advantage and disadvantage of solid fuel rockets.
- 11. Discuss the propellant in solid fuel rockets; its composition and shape.
- 12. Determine the purpose for building rockets in stages.
- 13. Discuss ways that jets and rockets are alike.
- 14. Discuss ways that jets and rockets are different.
- 15. Construct model rockets from kits.
- 16. Obtain a launch pad for rockets and hold a rocket launch.

Sperry Univac, Attention: Free Film Library, MS B-218M, P.O. Box 500, Blue Bell, PA 19424.

3. Filmstrips:

- a. Rocket Power, Scott Education, Lower Westfield Road, Holyoke, MA 01040.
- b. Balloons and Airplanes.
- c. Milestones of Flight.
- d. Flight Technology
 Available from National Air and Space
 Museum, Smithsonian Institution, Washington, DC 20560.

an antion. Blow over the top of the curved surface.

- 2. Suspend two ping-pong balls about one inch apart. Blow between them.
- 3. Build a wind tunnel.
- 4. Discuss different types of wings on aircraft and the effect on flight.
- 5. Identify other structural parts of a plane where this principle applies.
- B. Gravitation: Any two objects are attracted in direct proportion to size and inversely proportional to the square of the distance between their centers.

$$g \ = \ \frac{m_1 m_2}{d^2} \qquad \quad T \ = \ 2 \quad L/g$$

g = acceleration due to gravity m_1 and m_2 = mass of the two bodies

T = period of the pendulum in sec.

- L = length of the pendulum in ft.
- 1. Drop a steel ball and at the same time throw a second steel ball in a horizontal plane. Observe that both strike the ground at the same time.
- 2. Locate the center of gravity in an airfoil and in other objects of various sizes.
- 3. Discuss the change in gravitational effect in relation to high-altitude flight; in relation to interplanetary flight.
- 4. Read and study gravity through the pen-
- C. Inertia: A body at rest remains at rest and a body in motion remains in motion until acted upon by some outside force.
 - 1. Place a stack of blocks on a small cart. Pull the cart in a straight line and then suddenly swerve the cart. Stack the blocks and stop and start the cart quickly.
 - 2. Suspend a 100 gm. weight on a spring balance. Quickly raise the balance and note the reading. Lower the balance quickly and note the decrease in weight as it starts to drop.
 - 3. Discuss the effects of gravity and inertia

Gate, 1976. d. Adams, Frank David, Aeronautical Dic-

- tionary. NASA, 1969.
- e. Elmer, James D., Theory of Aircraft Flight. Air Force Junior ROTC, 1974.
- f. Use any good high school or junior high school physics or general science textbook depending on the level of the student.
- 2. Filmstrip:
 - a. Lift and Thrust, Scott Educational Division, Lower Westfield Road, Holyoke Road, MA 01040.
- 3. Films:
 - a. How An Airplane Flies, 56 minutes, color, Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, IN 46239.

B. Gravitation

- 1. Readings:
 - a. McKinley and Bent, Basic Science for Aeronautical Vehicles. McGraw-Hill, 1972.
 - b. McGraw-Hill Encyclopedia of Science and Technology, 1960.
- 2. Films:
 - a. Gravity: 10 minutes, black and white, Coronet Films.
 - b. The Force of Gravity, 10 minutes, black and white, Young America Films.

C-D. Inertia and Law of Acceleration

1. Films:

(The following films may be used to enrich and explain any part of the mechanics of flight and explain many clearly defined principles.)

- a. How An Airplane Flies, 56 minutes, color, 1976.
- b. High Speed Flight, 20 minutes, black and white, 1976.

Both available on a free loan basis from Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, IN 46239.

- trifugal and centripetal force.
- Roll a marble down an inclined plane and observe it gain speed. Try to determine its rate of acceleration.
- 4. Place a small amount of water in a bucket. Swing it rapidly in a vertical circle. Discuss why the water stays in the bucket.
- 5. Discuss the action of freely falling bodies, and the action of air resistance on these bodies.
- E. Moment of Force: The moment is equal to the length of the arm times the force causing rotation.
 - 1. Discuss the effect of moment of force in relation to gravity and lift. Discuss the effect that the shifting of its load would have on a plane.
 - 2. Discuss the meaning of stability. What factors affect it?
- F. Resultant Forces: The resultant of two or more forces is the single force that would be equal in effect to such forces.
 - 1. Set up a vector table. Use any physics laboratory manual.
 - 2. Discuss the relationship between thrust and drag; between weight and lift.
- G. Newton's Third Law of Motion: To every action there is an equal and opposite reaction.
 - Have a student who has fired a shotgun give an account of his first attempt at shooting it.
 - 2. Fill a balloon with air and release it suddenly. Account for its motion after its release.
 - 3. Explain the relationship between thrust and weight in view of this law.
 - 4. Tie a string to two adjacent corners of a cardboard, and pull it through the air.
- H. Friction: Fluid friction varies as a square of the velocity. Dry sliding friction is independent of speed.
 - Measure the force required to pull a wooden block along a smooth surface. Place rollers under it, and measure again. Remove the rollers and lubricate.
 - 2. Rub the palms of hands together briskly and note the heat generated.

E. Moment of Force

- 1. Films:
 - a. Force and Motion, 10 min., b/w, Coronet Films.
 - b. Energy and Its Transformation, 11 min., b/w, Coronet Films.
 - c. An Introduction to Vectors: Coplaner Concurrent Forces, United World, Inc., 1445 Park Avenue, New York, NY.
- 2. Filmstrip:
 - a. Moment of Force, Scott Educational Division, Lower Westfield Road, Holyoke, MA 01040.
- G. Newton's Third Law of Motion
 - 1. Filmstrips:
 - a. Jet Power, Scott Educational Division, Lower Westfield Road, Holyoke, MA 01040.
 - b. How the Jet Engine Works, American Gas Association, 1515 Wilson Blvd., Arlington, VA 22209.

H. Friction

- 1. Film:
 - a. Swish! Science and Curveballs and Gliders,
 20 minutes, color. 1621 West 9th Street,
 Lawrence, KS 66044.

(Investigates the concepts of fluid flow, Bernoulli's principle, air pressure, lift, airfoil design, streamlines and even spit balls.)

- over a pully and attaching weights. Bend a wire until it breaks. Note the heat at the point of flexing.
- 2. Place a matchbox, or other light box, under weights.
- 3. Note the action of shears on paper.
- 4. Place two metal bars side by side with a hole through each, aligned. Insert a match through the hole and pull the bars.
- 5. Clamp one end of a meter stick to table. Apply rotational force to illustrate torque.
- 6. Discuss:
 - a. Where the effect of these forces are found in the plane.
 - b. Safety factors and the air regulations that pertain to them.

J. Speed of Sound.

- 1. Use a metronome and strike a drum every half second. Have others in the group increase their distance from the drum gradually until they reach a point where they cannot hear the sound of one drum stroke until the next is completed. Measure the distance of the group from the drum. Repeat the procedure to discover the effect of the wing. Compute the speed of sound.
- 2. Discuss the meanings of sound barrier, Mach number and sonic boom.
- 3. Discuss the physical effect of sound.
- K. Archimedes' Principle: A body in a fluid is buoyed up by a force equal to the weight of the displaced fluid.
 - 1. Weigh a body of known volume in air and then in water. Calculate the difference in weight under these two circumstances. Compare this with the weight of the displaced water.
 - 2. Determine the weight of air by first weighing a metal sphere of known volume containing an evacuation valve. Evacuate the sphere with a pump having a closed tube manometer so that the percentage of evacuation can be determined. With the accumulated data calculate the weight of air.
 - 3. Discuss the manner in which Archimedes' Principle applies to lighter-than air craft.

- Aerospace Vehicles, Fourth edition, McGraw-Hill Book Company, 1972.
- b. The McGraw-Hill Encyclopedia of Science and Technology, New York, 1971.
- c. Bauer, Frances, Supercritical Wind Sections, Springer-Verlag, 1975.

J. Speed of Sound

1. Film:

a. Beyond the Speed of Sound, 19 min., b/w, Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, IN, 46239.

K. Archimedes' Principle

1. Films:

- a. The Blimps: Clearly Identified Flying Objects, Public Relations Film Library, 114
 East Market Street, Akron, OH 44316.
- b. Research in the Atmosphere, 25 min., color, 1969. NASA, Lyndon B. Johnson Space Center, Education Office, Houston, TX 77058.

3. Invite a mechanic to explain the action of an automobile hydraulic system.

M. Boyle's Law: The volume of a gas varies inversely with the pressure and temperature, remaining constant.

K = PV

P = absolute pressure.

V = volume

K = constant

1. Place a partially inflated balloon in a vacuum jar and evacuate the jar. Note the increase in the size of the balloon. Discuss.

- 2. Discuss how the principle illustrated above can apply to aviation.
- 3. Examine an aneroid barometer and explain the action of it in view of this principle.
- 4. Explain why weather balloons burst upon reaching very high altitudes.
- N. Charles' Law: The volume of a gas varies directly, its absolute temperature, pressure remaining constant.

$$K = \frac{V}{T}$$

V = volume

T = absolute temperature

- 1. Fill a balloon with cool air and place it near a radiator. Observe.
- 2. Obtain an air thermometer. Explain its action.
- 3. Discuss the first balloon ascensions made by open-bottomed canopies filled with hot air.
- O. Temperature Considerations
 - 1. Measurement

Faherenheit Celsius $\frac{5}{9} = \frac{C}{F - 32}$

- a. Demonstrate:
 - i. The principle of a thermometer.
 - ii. Various types of thermometers.
 - iii. The two kinds of thermometer scales.
- b. Make an alcohol thermometer.
- c. Make a chart which shows the relationship between Fahernheit and Celsius thermometers.
- d. Solve problems in converting one scale to another.
- e. Keep temperature charts: hourly, daily, weekly, indoors, outdoors, etc.
- f. Discuss the meaning of isotherms.
- 2. Insulation

Temperature radiation

M. Boyle's Law

1. Film:

a. Introducing Air, 11 minutes, color, Bailey Films, Inc. 1962.

2. Booklets:

- a. Demonstration Aids for Aviation Education, Civil Air Patrol.
- b. Martin, Elizabeth, Aerospace Activities for Learning and Fun, University of South Alabama.

N. Charles' Law

- 1. Readings:
 - a. Navigation and the Weather, Civil Air Patrol.
 - b. Satellites at Work, NASA.
 - c. Lewis, Alexander, Gas Power and Dynamics, R.E. Krieger, 1978.
 - d. Leavy, Thomas A., Basic Meteorology, Lab Manual, Grades 9-12, Allegheny Press, 1969.

O. Temperature Considerations

1. Films:

- a. Heat—Its Nature and Transfer, 11 minutes, black and white. Encyclopedia Britannica Films, 1958.
- b. The Ultimate Energy, 28 minutes, color, National Audio-Visual Center, 1976.
- c. Waves and Energy, 10 minutes, color, E.B.E.C., 1961.
- d. Hot, Warm, Cold, 5 minutes, color, Mac-Millan, 1972.
- e. Story of a Storm, 10 minutes, black and white, Coronet Films, 1950.

2. Films:

- a. Nature of Energy, 10 minutes, black and white, Coronet Films, 1948.
- b. The Mouse-Activated Candle Lighter, 5 minutes, color, Prism Productions, 1967.

- e. Discuss.
 - i. Effect of the atmosphere upon the sun's rays passing through it.
 - Differences in absorption of land and water surfaces.
 - iii. Cause of land and sea breezes.
 - iv. Differences in the angle at which the sun's rays strike the earth during the seasons and how these affect weather.
 - v. How thermal currents are used in gliding.
 - vi. Effect of the angle of radiation on heating.
 - vii. Coriolis effect on winds.
- 3. Temperature Lapse
 - a. Demonstrate the temperature difference in the top and bottom of a room.
 - b. Draw a chart showing variation of temperature with altitude.
 - c. Discuss causes and effect of different lapse rates, of temperature inversion.
 - d. Estimate the lapse rates from the type of clouds.
 - e. Discuss the difference between wet and dry lapse rates.
 - f. Estimate the altitude at the base of a cloud.

altitude = $\frac{\text{surface temp.-dew point}}{\text{lapse rate} - 1}$

g. Estimate the cloud base temperature.

Temp. = Temp. at earth's surface - <u>altitude of cloud</u> lapse rate 1

(in 1000 feet)

- h. Discuss the cause of Chinook winds.
- P. General Principles Which Underlie the Basic Causes of Weather and Climate Conditions.
 - 1. Air has weight and mass.
 - a. Blow up a paper bag and burst it.
 - b. Push inverted glass with dry paper in the bottom of a pan of water.
 - Pour air from one beaker to another under water.
 - d. Measure the volume of a balloon by releasing its air into a graduate cylinder inverted in a pan of water.
 - e. Compute the weight of air in a room.
 - f. Determine the density of air.

3. Films:

- a. What Makes Clouds?, 19 minutes, color, Encyclopedia Britannica Films, 1965.
- b. Clouds Above, 9 minutes, color, Bailey, 1964.

- P. Basic Causes of Weather
 - 1. Air has weight and mass Films:
 - a. Winds and Their Causes, 10 minutes, black and white, Coronet Films.
 - b. Nothing But Air, 11 minutes black and white, Encyclopedia Britannica Films, 1949.

- d. Place iron filings in a bottle of oxygen.
- e. Conduct tests for the presence of oxygen.
- f. Discuss the properties of nitrogen in the air.
- g. Report on the oxygen-nitrogen cycle in nature.
- h. Demonstrate the production of, and tests for, carbon dioxide.
- i. Review the three states of water.
- j. Demonstrate the presence of water vapor in the air.
- k. Explain why water vapor content of the air varies.
- 1. Observe the presence of dust in the air.
- m. Discuss rare gases in the air.
- n. Locate gases on the periodic table.
- 3. Air is constantly in motion.
 - a. Observe anemometer.
 - b. Study the action of gliders and kites.
 - c. Release helium filled balloons tied to a post card with name, address and request for return.
- 4. Air movement is caused by weight and pressure difference.
 - a. Discuss and observe different kinds of barometers.
 - b. Construct a mercury barometer.
 - c. Keep a daily record of pressure changes.
 - d. Construct a convection current box.
 - e. Discuss the meaning of "normal air pressure."
 - f. Discuss different units in which air pressure can be expressed.
 - g. Discuss factors causing pressure variations.
- 5. Air's ability to hold water vapor lessens as it
 - a. Determine the "dew point" temperature of the atmosphere.
 - b. Observe "clouds" at end of spout of boiling tea kettle.
 - c. Build hygrometer and psychrometer.
- 6. Clouds.

The nature and significance of clouds is determined by temperature, turbulence, foreign particles and water vapor content.

a. Learn to identify clouds and determine their significance.

- 3. Air is constantly in motion Films:
 - a. Inconstant Air, 27 minutes color, McGraw, 1961.
 - b. Learning About Air, 11 minutes, color, Paramount Films, 1972.
- 4. Weight and pressure difference Film:
 - a. Gas Pressures and Molecular Collisions, 21 minutes, black and white, Encyclopedia Britannica Films, 1962.

6. Clouds

Films:

- a. Clouds Above, 9 minutes, color, Bailey Films, 1964.
- b. What Makes Clouds, 19 minutes, color, Encyclopedia Britannica Films, 1965.

- in. distance to gain attitude
- b. List methods used by pilots and runway designers to compensate for the effects of thin air.
- c. Discuss factors to be considered in landing in thin air.
- d. Demonstrate the effects of lift by the use of a small wind tunnel constructed by pupils.
- 2. The Engine.
 - a. Locate information and discuss effects of thin air on the:
 - i. propeller
 - ii. fuels (mixtures)
 - iii. engine.
- R. All basic principles of electricity are involved in the operation of the aircraft.
 - 1. Conduct a general laboratory demonstration and discussion of the principles of electricity.
 - 2. A very good source of DC electricity for the average high school or junior high school laboratory may be cheaply had by securing a 24-volt aircraft generator and gearing it to a 2 H.P. electric motor. There is no limit to its versatility with the use of proper rheostats, buss bars, shunts and imagination.

R. Principles of electricity

- 1. Films:
 - a. *Electronics*, 11 minutes, black and white, Encyclopedia Britannica Films.
 - b. Electrons on Parade, 21 minutes, black and white, R.C.A.
 - c. Plane Without a Pilot, Bell Aircraft Corporation, Buffalo, NY.
- 2. Readings:
 - a. Experiments with Magnetism and Electricity, NSTA Publication.
 - b. Radio Direction Finder, Sperry Gyroscope Company, Great Neck, NY.

?

social studies teacher will find the material readily adaptable to use in providing extensive experiences in these areas.

While the treatment of aviation careers has been included in this section of the guide, it can also be effectively used as an independent series of lessons. It should be emphasized that the occupations listed are of a general nature and are not meant to be an exhaustive list of aviation and aviation-related careers. Individual or group study on careers in military aviation, the air transport industry, utility aviation, etc., would be appropriate extensions of this topic.

- -To develop skill in reading and interpreting maps and globes and locating places on the earth's surface.
- -To learn the fundamentals of methods used in aerial navigation.
- -To gain insight into the social, economic and physical changes resulting from the discovery and development of air transportation.
- -To recognize vocational opportunities in aviation.
- -To learn strategies and techniques useful in gaining employment.

- e. Simon, the Magician in the time of Nero, who tried to fly from a tower.
- f. Oliver, the Monk, with Daedalian wings.
- g. The Saracen (11th century) robe with rods which spread like wings.
- 2. Read the myths "Daedalus" and "Phaeton."
- 3. Display pictures of early designs for flying machines such as those of da Vinci, early gliders, balloons, and all types of powered aircraft from the Wright brothers to modern times.
- 4. Write original stories of fantasy concerning the Greek mythology of aviation.
- 5. Read and illustrate ideas of flying related to Indian legend.
- 6. Make reports on the progress of aviation such as:
 - "The Story of Air Transportation Today"
 "The Story of Air Transportation in the Future"
- 7. Discuss the parachute and its role in aviation.
- 8. Make small parachutes to exhibit with model airplanes.
- 9. Plan to visit a museum if possible; if not, have a discussion and reports on the National Air and Space Museum in Washington, D.C.
- 10. Make comparison charts on flight records made in the past with more recent ones.
- 11. Report on:
 - a. Invention of the kite.
 - b. Gunpowder rockets.
 - c. da Vinci's sketches of aircraft and parachute.
 - d. Montgolfier brothers' balloon.
 - e. Ferdinand von Zeppelin's dirigible.
 - f. Sir George Cayley.
 - g. Otto Lilenthal.
 - h. Samuel Pierpont Langley.
 - i. How air mail service developed.
 - j. Byrd's first visit to the South Pole, 1929; North Pole, 1926.
 - k. Amelia Earhart.
 - l. First trans-Pacific flight.
 - m. Round-the-world flights.
 - n. First experiments with helicopters.
- 12. Make models of early type gliders.

- e. General William "Billy" Mitchell.
- f. Edward Rickenbacker.
- g. General Daniel "Chappie" James.
- h. James H. Doolittle.
- 15. Make a "Current Events in Aviation" notebook or bulletin board.
- 16. Make reports on the latest development in rockets.

Materials and Resources

- 1. Wall Chart: Chronology of Aerospace Events, Civil Air Patrol, Maxwell AFB, AL 36112.
- 2. Pictures and free materials from airline companies and airplane manufacturers.
- 3. Learning packets:
 - a. Aerospace Personality Series.
 - b. History of General Aviation Series. Both from Civil Air Patrol, 1980.
- 4. Films:
 - a. Icarus and Daedalus, 6 minutes, animated, color. Sterling Productions, N.Y., 1964.
 - b. The Early Days, 30 minutes, color. Air Power Series, CBS-TV, 1958.
 - c. Time Flies, Association Films, Inc., Executive Offices, 866 Third Avenue, NY 10022. Free loan.
 - d. Oh, How We Flew, Western Airlines, P.O. Box 92005, World Way Postal Center, Los Angeles, CA 90009. Free loan.
 - e. A Trip to Chicago, Modern Talking Picture Service, Inc., 5000 Park Street, N., St. Petersburg, FL 33709. Free loan.
 - f. In Celebration of Flight, FAA Film Service, c/o Modern Talking Picture Service, Inc., 5000 Park Street, N., St. Petersburg, FL 33709.
 - g. A Man's Reach Should Exceed His Grasp, NASA Lyndon B. Johnson Space Center, Education Office, Houston, TX 77058.
 - h. Kites to Capsules, 5 minutes, black and white. FAA Film Service, c/o Modern Talking Picture Service, 5000 Park Street, N., St. Petersburg, FL 33709. Free loan.

- war 11, wm. Clausen and Sonus, Liu., 1910.
- c. Great Adventures That Changed Our World, Reader's Digest Association, 1978.
- d. McMullen, David and Susan. First Into the Air, Silver Burdett, 1978.
- e. Hartcup, Guy. The Achievement of the Airship, David E. Charles, 1975.
- f. Cook, Graeme. Air Adventures, St. Martin's,
- 1. Auit, Fill, By The Seat of Their Fants: The Story of Early Aviation, Dodd, Mead, 1978. m. Norman, Bruce. The Inventing of America,
 - Taplinger, 1976.
 - n. Aerospace: The Challenge, Civil Air Patrol,
 - o. Boyne and Lopez. The Jet Age: Forty Years of Jet Aviation, Smithsonian Institution Press, 1979.

- Explain now a mercator projection is made.
- 5. Draw a rough outline of the continents on a large grapefruit; slit the top and bottom with a knife; remove the peel in four sections, press flat and display.
- 6. Using globe, determine lines of latitude and longitude.
- 7. Use a basketball as a globe: draw prime meridian and lines of longitude; draw equator and lines of latitude.
- 8. Demonstrate suntime during daytime and night with a globe and flashlight.
- 9. Discuss degrees of longitude and latitude.
- 10. Determine to the nearest degree the location of several world cities.
- 11. Make cones in math. Place over the globe and trace reflected lines on the surface.
- 12. Discuss conic projection.
- 13. Define degree in nautical miles and in minutes of an art. (One degree = 60 nautical miles: one minute of arc = 1 nautical mile).
- 14. List the important features of a map based on a Mercator projection.
- 15. Draw a map of the area around your city.
- 16. Draw map of your state: put in cities, highways, railroads, airports, etc.
- 17. Draw maps of air routes of the state features.
- 18. Make a vocabulary chart pertaining to maps and map symbols.
- 19. Draw a map with different altitudes shown in various colors.
- 20. Learn the relationship between time and distance.

 $360^{\circ} = 24 \text{ hours}$ $10^{\circ} = 40 \text{ minutes}$ $15^{\circ} = 1 \text{ hour}$ $1^{\circ} = 4 \text{ minutes}$

- 21. Draw a chart of time zones in the U.S.
- 22. Discuss the International Date Line.
- 23. Discuss the need for a uniform time system.
- 24. Discuss the effects of traveling through many time zones on the human body (jet lag).
- 25. Discuss daylight saving time.
- 26. Show examples of the time in various major

- c. Towers, Merrill E., A Student Guide for Aeronautics, 1963.
- d. Beiser, Arthur, Our Earth, E.P. Dutton, 1959.
- e. Jeffreys, Arhold, *The Earth*, (4th ed.) Cambridge University Press.
- f. Brown, Lloyd A., The Story of Maps, Little-Brown, 1949.
- g. Gurney and Elliott, Pilot's Handbook of Navigation, Aero, 1977.
- h. Keen, Martin L., How It Works: Volume 2. Grossett and Dunlap, 1976.
- Reithmaier, L.W., Private Pilot's Guide, Aero, 1978.
- j. Navigation and The Weather, Civil Air Patrol.
- k. Air Navigation: Introduction to Navigation, McGraw-Hill.
- l. Aerospace: The Challenge, Civil Air Patrol.
- m. Budlong, John P., Sky and Sextant, Van Nostrand Reinhold, 1978.

2. Films:

- a. Maps are Fun, 10 minutes, color, Coronet Films.
- b. Longitude and Latitude, 11 minutes, black and white, United World Films.
- c. Using a Compass, 10 minutes, color, Moreland-Latchford.
- d. Aerial Navigation: Maps and the Compass, 13 minutes, black and white, United World Films.
- e. Global Concepts in Maps, 11 minutes, color, Coronet Films.
- f. Celestial Navigation: The Earth, 16 minutes, black and white, Castle Films.
- g. Celestial Navigation: Charts, 20 minutes, Castle Films.
- 3. Maps and Free Materials are often available from airline companies.

4. Charts:

a. Available from National Ocean Survey, Distribution Division (C-44), 66501 Lafayette Avenue, Riverdale, MD 20840: Catalog of Aeronautical Charts and Related Publications.

- 4. Use a sectional chart to plan a flight course to be followed to the nearest airport.
- 5. Discuss the effects of wind changes upon a flight path.
- 6. Locate the prime meridian and review meridians: locate the equator and review parallels. Discuss coordinates.
- 7. Determine the locations of true north and magnetic north. Explain how the differences between these affects flight planning.
- 8. Make a compass.
- 9. Use a compass to determine directions.
- 10. Make a chart showing compass variations in the U.S.
- 11. Examine an automobile compass.
- 12. Write some problems in determining the true heading required in making a flight plan to a nearby location. Make the required course corrections.
- 13. Display pictures showing various navigational aids.
- 14. Identify all the instruments required for flight by dead reckoning and describe the function of each.
- 15. List the advantages and disadvantages of dead reckoning.
- 16. Obtain and discuss an FAA Flight Plan Form.

B. Celestial Navigation:

- 1. Examine a sextant and discuss its function.
- 2. Make a simple sextant and describe the operation of it.
- 3. Make a study of the relative positions of heavenly bodies.
- 4. Draw a series of pictures to illustrate the changes in position of the Big and Little Dippers.
- 5. Study a celestial globe to find the relative position of the stars in comparison with the north pole, south pole, equator and your city.
- 6. Draw a map showing major constellations or stars used in celestial navigation.

- c. Air Navigation: An Introduction to Navigation, McGraw-Hill.
- d. Keen, Martin L. How It Works, Volume 2.
 Grossett and Dunlap, 1976.
- e. Beiser, Arthur. Our Earth, E.P. Dutton, 1959.
- f. Jeffries, Harold. Our Earth (4th ed.), Cambridge University Press.
- g. Aerospace: The Challenge. Civil Air Patrol.
- h. Navigation and the Weather, Civil Air Patrol.
- i. Towers, Merrill E. A Student Guide for Aeronautics, 1963.
- j. Gurney and Elliott, Pilot's Handbook of Navigation, Aero, 1977.
- k. Aeronautics, The First Step to Space, NASA.
- Budlong, John P., Sky and Sextant, Van Nostrand Reinhold, 1978.

2. Filmstrip:

a. Dead Reckoning, b/w, University of Illinois.

3. Films:

- a. Using a Compass, 10 min., color, Moreland-Latchford.
- b. Aerial Navigation: Maps and the Compass, 13 min., b/w, United World Films.
- c. The Sport of Orienteering, 24 min., color, Siva Film.

B. Celestial Navigation

1. Readings:

- a. Aerospace: The Challenge, Civil Air Patrol.
- b. Aeronautics, The First Step to Space, NASA.
- c. Gurney and Elliott, Pilot's Handbook of Navigation, Aero, 1977.
- d. Keen, Martin L., How It Works, Volume 2. Grossett and Dunlap, 1976.

2. Films:

a. Celestial Navigation: Introduction and Location of Celestial Points, 18 min., b/w, Castle Films.

- 3. Practice sending radio code signals.
- 4. Visit the control tower at an airport.
- 5. Explain how the radio compass works.
- 6. Report on the method a pilot uses to orient himself to the position of an airport by means of the radio signals received.
- 7. Illustrate, with explanations, the instruments used in radio navigation.
- 8. Discuss factors which interfere with a radio reception.
- 9. Report on radar devices used for radio navigation.
- 10. Invite a speaker from a radio station to speak on radio navigation.
- 11. Discuss other uses made of radio instruments.
- 12. List advantages and disavantages of radio navigation.
- 13. Report on LORAN (Long Range Navigation).
- 14. Discuss the Very High Frequency Omnidirectional Range (VOR).

- b. Aerospace of, Civil Air Patrol.
- c. Elliott and Gurney. Pilot's Handbook of Navigation, Aero, 1977.
- d. Webb, William L. Flying with VHF Navigation and Communication, Bendix Corporation.
- e. Letcher, John S., Self-Contained Celestial Navigation, International Marine Publications, 1978.

2. Films:

a. Area Navigation, 25 minutes, FAA Film Service, c/o Modern Talking Picture Service, Inc., 5000 Park Street, N., St. Petersburg, FL 33709.

- in nours instead of fiftes.
- 4. Make a comparison of the number of passengers carried by airlines today with that of twenty years ago.
- 5. Display different kinds of maps used in aviation. Explain how the airplane conquers mountains and oceans, thus bringing countries closer together.
- 6. Study the history of mail. Make posters showing a comparison of the time and cost of sending airmail and regular mail.
- 7. Organize a pen-pal club with students in overseas school. Display letters, pictures, etc. from them. Learn some of the foods, customs, religion and economic problems of the country.
- 8. Compare construction and maintenance of highways and airways.
- 9. Discuss the role of aviation in the aid to people in disaster areas and for medical emergencies.
- 10. Construct a bar graph showing the length of time it took the Pilgrims to come to America and the time if takes to fly from Europe to America today.
- 11. Invite a travel agent to discuss foreign travel.
- 12. Compare the rate of air accidents with those of other modes of travel.
- 13. Write to a travel agency requesting free materials on a city in a foreign country.
- 14. Review: Early history of communications from Indian picture writing to the airmail stamp.
- 15. Discuss the nearness to the whole world that has been made possible by the development of aviation.
- 16. Discuss reasons for the rapid improvement in the science of weather since the development of the airplane and of the weather satellite.
- 17. Discuss:
 - a. Population trends toward centers of air transportation.
 - b. Cultural understanding due to increased travel in foreign countries.

miles or kilometers.

18. Make a list of well-known artists in the fields of entertainment and sports and discuss how air travel makes it possible for them to appear in different countries from one day to another.

Materials and Resources

1. Films:

- a. There Will Be a Slight Delay, Modern Talking Picture Service, Inc., 5000 Park Street, N., St. Petersburg, FL 33709. Free Loan.
- Available on a free loan basis from NASA Lyndon B. Johnson Space Center, Education Office, Houston, TX 77058:
 - 1. Survival, 17½ min., color.
 - 2. Five Minutes to Live, 18 min., color.
 - 3. Partners with Industry, 12 min., color.
 - 4. David's World, 11 min., color.
- c. Rapid Transit in the Sky, Air Transport Association of America, 1709 New York Avenue, N.W., Washington, D.C., 20006. Free Loan.

2. Charts:

- a. Available from National Ocean Survey, Distribution Division (C-44), 65501 Lafayette Avenue, Riverdale, MD 20840:
 - 1. Sectional and VFR terminal charts.
 - 2. Enroute low altitude charts.

3. Readings:

- a. 10001 Sources for Free Travel Information, Box 105, Kings Park, NY, 11754.
- b. Knight, Geoffrey. Concorde, Stein & Day, 1976
- c. Kane and Vose. Air Transportation, Kendall/Hunt, 1977.
- d. Air Travel Answers, P.O. Box 11347, Las Vegas, NV 89111.

4. Filmstrips:

- a. Great Spacecraft and Their Accomplishments
- b. Social Impact of Flight
- Both available from National Air and Space Museum, Washington, D.C. 20560.

- c. Maintenance
- d. Research and development
- 2. Review classifications of aviation: commercial, general and military.
- 3. Prepare charts showing a comparison of aviation industry growth with other industries.
- 4. List as many aviation jobs as possible in a ten minute period and compile these into a master list.
- 5. Group aviation careers into categories such as:
 - a. Services
 - b. Technical
 - c. Manufacturing
 - d. Sales
 - e. Special purpose flying
- 6. Collect pamphlets and booklets on careers found in the field of aviation. (See Materials and Resources in this section.)
- 7. Display pictures to class showing participation in various aviation occupations.
- 8. Arrange an aviation career corner in the classroom or library.
- 9. Write a letter to the personnel department of an airline company requesting information on career opportunities.
- 10. Set up appointments at a nearby airport to interview persons in various job categories. Tape record your interview and present it to the class.
- 11. Discuss the importance of aptitudes and interests in choosing a career.
- 12. Research and report on an aviation career. Discuss duties, working conditions, qualifications, training requirements, earnings and hours.
- 13. Organize a Career Day at your school. Arrange to invite speakers, show films, arrange exhibits, etc.
- 14. Select a city in which an aviation industry is located. Write the Chamber of Commerce for information on employment.
- 15. Invite a "career" Air Force person to speak to the group.

- advertisements.

 19. Write a job advertisement for a position that interests you.
- 20. Fill out job applications to gain experience in applying for any positions.
- 21. Discuss personal traits that interviewers take note of, such as good grooming, posture, punctuality, etc. Emphasize the importance of first impressions.
- 22. Read materials on interviewing techniques.
- 23. Conduct class interviews for specific jobs.
- 24. Make a list of schools offering training in a job you would like.
- 25. Discuss and list types of engineers employed in aviation. Explain some functions of computer specialists in aviation.
- 26. List aviation careers that may require a license.
- 27. Discuss benefits to the science of meteorology due to the growth of aviation.
- 28. Discuss the implications of aviation growth on other fields.
- 29. List aviation careers by the training required to enter the occupation.
- 30. Discuss how a change in government spending affects an industry like aviation.
- 31. Discuss the immediate employment situation in the career field and project trends which may have bearing on future entry into the field.
- 32. Identify the different routes (educationally or occupationally) one might take to get into a particular career, including training, licensing, certification, and other special requirements.

Materials and Resources

1. Films:

a. Films available on free loan from FAA Film Service, c/o Modern Talking Picture Service, Inc., 5000 Park Street N, St. Petersburg, FL 33709:

Looking Up To Your Aviation Career; Put Wings On Your Career; These Special People; Brother.

b. Just a Flight, 15 minutes, black and white,

Airport Careers; Aviation Maintenance; Flight Attendants; Airline Careers.

3. Readings:

- a. Scribner, Kimball. Your Future In Aviation Careers In The Air, 1979.
- b. Scribner, Kimball, Your Future In Aviation Careers On The Ground, 1979.
- c. Transport Career Opportunities, National Defense Transportation.

space career opportunities will be provided by writing to:
U.S. Air Force
Air Force Opportunity Center
P. O. Box 1776
Valley Forge, PA. 19481 OR
Air Force ROTC
Center of Information
Maxwell Air Force Base, AL 36112

5. A list of some aerospace careers is provided at the end of this section.

Fabrication Inspector Machine Operator Tool and Die Maker

B. College and University Training-training which leads to a baccalaureate degree after four years of

Airport Manager

Architect

Communication Specialist Computer Programmer Data Systems Analyst Development Technician

Development Techr Industrial Planner Mathematician

Production Technician Quality Control Inspector Research Technician

Safety Engineer Sanitarian Science Writer

C. Advanced Study and Specialized Experience - graduate study and specific work experiences:

Aeronautical Engineer

Astronaut

Astronautical Engineer

Astronomer

Biomedical Engineer

Chemist

Chief Flight Mechanic

Dietician Engineer

Environmental Engineer

Flight Surgeon

 ${\bf Geographer}$

Geologist

Group Engineer Industrial Engineer Mechanical Engineer

Metallurgist Meteorologist Molecular Biologist Operations Analyst

Physicist

Research Mathematician

1975.

Bauer, H. A. Globes, Maps and Skyways. 1969.

Baxter and Stephens. Introduction to Global Geography. 1968.

Beiser, Arthur. Our Earth. E. P. Dutton, 1959.

Blau, Melinda E. What Ever Happened to Amelia? Counterpoint, 1978.

Blicq, Ron. On the Move: Communication for Employees. Prentiss-Hall 1976

Hall, 1976.
Boyd, K. T. Air Transport Pilot: A Comprehensive Test and

Boyd, K. T. Air Transport Pilot: A Comprehensive Test and Workbook for the AIP Written Exam. Iowa State University Press, 1978.

Boyne and Lopez. The Jet Age: Forty Years of Jet Aviation. Smithsonian Institution Press, 1979.

Brown, Lloyd A. The Story of Maps. Little-Brown, 1949.

Buchanek and Bergin. Piloting/Navigation with the Pocket Calculator. Tab Books, Incorporated, 1977.

Budlong, John P. Sky and Sextant. Von Nostrand Reinhold, 1978.
Bullfinch, Thomas. Bullfinch's Mythology. Harper and Row, 1970.
Christie and Erickson. Engines for Homebuilt Aircraft. Tab Books, Inc., 1978.

Cook, Graeme. Air Adventures. St. Martins, 1975.

Cosgrow, C. Burton. Fantasy in Flight. Aviation Book Company, 1975.

Civil Air Patrol. Aerospace: The Challenge. Civil Air Patrol, 1980. Davidson, Jesse. Famous Firsts in Aviation. Putnam, 1976.

Davidson, Jesse. Famous Firsts in Aviation. Putnam, 1976.
Dilly, Martin. This is Model Flying. Transatlantic Works, 1976.

Donnan and Donnan. From Raindance to Research. McKay, 1976. Elliot and Gurney. Pilot's Handbook of Navigation. Aero Publishers, 1977.

Ellis, Chris. How to Make Model Aircraft. Areo Publishing Company, 1975.

Elmer, James D. Theory of Aircraft Flight. Air Force Junior ROTC, 1974.

Federal Aviation Administration. Pilot's Handbook of Aeronautical Knowledge, Department of Transportation, 1979.

Gallo, Alma. Air Travel fron the Beginning. Children's Press, 1978.

Gibbs-Smith, Howard. Aviation, A Historical Survey from Its Origins to the End of World War II. Wm. Clausen and Sons, Ltd., 1970.

Gurney and Elliot. Pilot's Handbook of Navigation. Aero, 1970. Hartcup, Guy. The Achievement of the Airship. David E. Charles, 1975.

Hatfield, David D. Pioneers of Aviation. Aviation Book Comany, 1976.

Jeffreys, Harold. The Earth. 4th ed., Cambridge University Press. Kane and Vose. Air Transportation. Kendall/Hunt, 1977.

Keen, Martin L. How it Works: Volume 1. Grossett and Dunlap, 1974.

Keen, Martin L. How it Works: Volume 2. Grossett and Dunlap, 1976.

Kershner, William K. The Instrument Flight Manual: The Instrument Rating. Iowa State University Press, 1978.

University of Southern Alabama, 1978.

McKinley and Bent. Basic Science for Aerospace Vehicles. McGraw-Hill, 1972.

McMullen, David and Susan. First Into the Air. Silver Burdett,

Mondey, David. The International Encyclopedia of Aviation. 1977. Morrison, Robert T. Instrument Pilot Examination. Arco Publishing Comany, 1979.

Mrajck, James E. The Glider War. St. Martin's, 1976.

Murry, Henry A. Myth and Myth-Making. G. Bronziller Company, 1955.

Nichols, Heimer & Garland, Henry. Modern Intermediate Algebra. Harcourt Brace Javanovich, Inc., 1972.

Norman, Bruce. The Inventing of America. Taplinger, 1976.

Peters and Schaaf. Fundamentals of Geometry. American Book Company, 1972.

Philpott, Bryan. Making Model Aircraft. Scribner, 1978.

Reithmaier, L. W. Private Pilot's Guide. Aero, 1978.

Ross, Frank Jr. Space Shuttle: Its Story and How to Make a Flying Model. Lee and Shepard, 1979.

Scribner, Kimball. Your Future in Aviation Careers in the Air. 1979.

Shanks, Brumfiel & Fleenor, Eicholz. Pre-Calculus Mathematics. Addision-Wesley.

Smith, Robert T. Your FAA Flight Exam-Private and Commercial, Rev. ed. Tab Books, Incorporated, 1978.

Talay, Theodore A. Introduction to the Aerodynamics of Flight. NASA, 1976.

Towers, Merrill E. A Student Guide for Aeronautics. 1963.

Trowbridge, John T. Best Loved Story Poems. Garden City Publishers, 1957.

Vent, Henry. Birds Without Wings. Children's Press, 1976. Washington and Edmond. Plane Trigonometry. Cummings Publishing Company, 1968.

2. BULLETINS AND PAMPHLETS:

Civil Air Patrol, Aerospace: The Challenge, Maxwell, Alabama: Civil Air Patrol.

Civil Air Patrol, Aviation Education, Maxwell, Alabama: Civil Air Patrol.

Civil Air Patrol, Demonstration Aids for Aviation Education, Maxwell, Alabama: Civil Air Patrol.

Civil Air Patrol, Navigation and the Weather, Maxwell, Alabama: Civil Air Patrol.

Federal Aviation Administration, Airport Careers, Washington: Federal Aviation Administration.

Federal Aviation Administration, Aviation Maintenance, Washington: Federal Aviation Administration.

Federal Aviation Administration, Career Pilots and Engineers, Washington: Federal Aviation Administration.

Federal Aviation Administration, Flight Attendants, Washington: Federal Aviation Administration.

Our World, Reader's Digest Association.

West, Ruth Gold, Aerospace Education Teaching Aids, Paoli, Pennsylvania.

3. FILMSTRIPS:

Basic Principles of Flight, Scott Educational Division, Holyoke, Massachusetts.

Controlling an Airplane, Scott Educational Division, Holyoke, Massachusetts.

Dead Reckoning, University of Illinois.

How Airplanes Fly, Scott Educational Division, Holyoke, Massachusetts.

How the Jet Engine Works, American Gas Association, Arlington, Virginia.

Jet Flight 923, Scott Educational Division, Holyoke, Massachusetts.

Jet Power, Scott Educational Division, Holyoke, Massachusetts.
Lift and Thrust, Scott Educational Division, Holyoke, Massachusetts.

Moment of Force: Jim Handy, New York, New York.

Rocket Power, Scott Educational Division, Holyoke, Massachusetts.

Safety in Flight, Jim Handy, New York, New York.

Air Transportation, National Air and Space Museum, Washington, D.C., 20560.

Apollo to the Moon, National Air and Space Museum, Washington, D.C., 20560.

Balloons and Airships, National Air and Space Museum, Washington, D.C., 20560.

Challenge of Restoration, National Air and Space Museum, Washington, D.C., 20560.

Creating the New National Air and Space Museum, National Air and Space Museum, Washington, D.C.,20560.

Cosmic Awakening, National Air and Space Museum, Washington D.C., 20560.

Early Flight, National Air and Space Museum, Washington, D.C., 20560.

Exhibition Flight, National Air and Space Museum, Washington, D.C. 20560.

Flight Technology, National Air and Space Museum, Washington D.C., 20560.

Great Spacecraft and Their Accomplishments, National Air and Space Museum, Washington D.C., 20560.

Important Feats of Aeronautics, National Air and Space Museum, Washington, D.C., 20560.

Milestones of Flight, National Air and Space Museum, Washington, D.C., 20560.

Rocketry and Space Flight, National Air and Space Museum, Washington D.C., 20560.

Satellites, National Air and Space Museum, Washington, D.C., 20560.

Social Impact of Flight, National Air and Space Museum, Washington, D.C., 20560.

Vertical Flight, National Air and Space Museum, Washington, D.C., 20560.

World War I A viation, National Air and Space Museum, Washington, D.C., 20560.

4. FILMS:

Aerial Navigation: Maps and the Compass, United World Films, 1445 Park Avenue, New York, NY.

A Man's Reach Should Exceed His Grasp, NASA, Lyndon B. Johnson Space Center, Education Office, Houston, Texas.

An Introduction to Vectors: Coplaner Concurrent Forces, United World, Inc. 1445 Park Avenue, New York, NY.

A Trip to Chicago, Union Carbide, Modern Talking Picture Service, Inc., 5000 Park Street, N., St. Petersburg, Florida.

Beyond the Speed of Sound, Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, Indiana.

Brother, FAA, Modern Talking Picture Service, Inc., 500 Park Street, N., St. Petersburg, Florida.

Clouds Above, Lem Batley Productions, 1600 W. Platt Street, Tampa, Florida 33606.

Climate and the World We Live In, Coronet Films, 65 E. South Water Street, Chicago, Illinois.

David's World, NASA, Lyndon B. Johnson Space Center, Education Office, Houston, Texas.

Electronics, Encyclopedia Britannica Films, New York, NY.

Energy and Its Transformation, Coronet Films, 65 E. South Water Street, Chicago, Illinois.

Five Minutes to Live, NASA, Lyndon B. Johnson Space Center, Education Office, Houston, Texas.

Force and Motion, Coronet Films, 65 E. South Water Street, Chicago, Illinois.

Gas Pressures and Molecular Collisions, Encyclopedia Britannica Films, New York, NY.

Global Concepts in Maps, Coronet Films, 65 E. South Water Street, Chicago, Illinois.

Geometry, Curves and Circles, Color Film Associates, New York. Geometry: Points, Angles, Lines . . . and Tigers, Bailey Films.

Gravity—How It Affects Us, Encyclopedia Britannica Films, New York, NY.

Gravity-Weight and Weightlessness, Film Associates, New York, NY.

Harnessing Liquids, Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, Indiana.

Heat—Its Nature and Transfer, Encyclopedia Britannica Films, New York, New York.

High Speed Flight, Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, Indiana.

Warm, Cold, McMillan, Front and Brown Streets, Riverside, NJ 08370.

How Air Helps Us, Coronet Films, 65 E. South Water Street, Chicago, Illinois.

How an Airplane Flies, Shell Film Library, 1433 Sadlier Circle West Drive, Indianapolis, Indiana.

How the Jet Engine Works, American Gas Association, Educational Services, Arlington, Virginia.

Icarus and Daedalus, Sterling Productions, New York.

In Celebration of Flight, FAA, Modern Talking Picture Service, Inc., 5000 Park Street, N., St. Petersburg, Florida.

Just a Flight, Association Films, Inc., Executive Offices, 866 Third Avenue, New York, New York.

Kites to Capsules, FAA, Modern Talking Picture Service, Inc., 5000 Park Street, N., St. Petersburg, Florida.

son Street, St. Louis, MO 63166.

Nothing But Air, Encyclopedia Britannica Films, New York, New York

Oh, How We Flew, Western Airlines, P.O. Box 920005, World Way Postal Center, Los Angeles, California.

Spaceship Earth, Lockheed-Georgia Company, Motion Picture Service, 5000 Park Street, N., St. Petersburg, Florida.

Story of a Storm, Coronet Films, 65 E. South Water Street, Chicago, Illinois.

Survival, NASA, Lyndon B. Johnson Space Center, Education Office, Houston, Texas.

Swish! Science and Curveballs and Gliders, 1621 West 9th Street, Lawrence, Kansas. Library Film Service, Fairfax, Virginia.

There Will Be a Slight Delay, Caterpillar Tractor Company,
Modern Talking Picture Service, Inc. 5000 Book Street, N. St.

Modern Talking Picture Service, Inc., 5000 Park Street, N., St. Petersburg, Florida.

The Ultimate Energy, National Audio Visual Center, New York, NY.

Using a Compass, Moreland-Latchford, Arlington Public Schools Film Library, Arlington Virginia.

Waves and Energy, Encyclopedia Britannica Films, New York, NY.

What Makes Clouds?, Encyclopedia Britannica Films, New York, NY.

Winds and Their Causes, Coronet, 65 E. South Water Street, Chicago, Illinois.

	·			
		·		

3. 1 IN = 80 MI	4% IN	=	380 MI	$(80 \times 4\frac{3}{4} = 380)$
4. $1 \text{ IN} = 32 \text{ MI}$	3% IN	=	100 MI	$(100 \div 32 = 3\frac{1}{8})$
5. $1 \text{ IN} = 8 \text{ MI}$	9% IN	=	75 MI	$(75 \div 8 = 9\%)$
6. 1 IN = 32 MI	9½ IN	=	304 MI	$(304 \div 9\frac{1}{2} = 32)$
7. $1 \text{ IN} = 16 \text{ MI}$	7% IN	=	114 MI	$(114 \div 7\frac{1}{8} = 16)$
8. $1 \text{ IN} = 32 \text{ MI}$	511/16 IN	=	182 MI	$(32 \times 5^{11})_{16} = 182$

- 9. Known: Sectional Chart Scale of 1:500,000 is about 8 miles to the inch then a scale of 1:1,000,000 is about 16 miles to the inch; or, $1,000,000 \div 12 \div 5280 = 15.78 = 16$ MI.
- 10. Known: 1:1,000,000 = 16 miles then 32 miles = 1 IN at a scale of 1:2,000,000; or, $32 \times 12 \times 5280 = 2,027,520$ or about 2,000,000.

Answers for Page 15

```
Scale 1 IN = 32 MI
                                                         (Distance in inches \times 32 = )
 1. 2\frac{1}{8} IN = 84 MI
 2. 2\frac{3}{4} IN = 88 MI
 3. 1\% IN = 44 MI
 4. 1 \text{ IN} = 32 \text{ MI}
 5. 1\% IN = 56 MI
    Scale 1 IN = 80 \text{ MI}
                                                         (Distance in inches \times 80 = )
 6. 2\frac{1}{8} IN = 170 MI
 7. 2\frac{1}{2} IN = 200 MI
 8. 2^{11}/_{16} IN = 215 MI
 9. \frac{5}{16} IN = 25 MI
10. 2_{16}^{9} IN = 205 MI
    Scale 1 IN = 64 MI
                                                        (Distance in inches \times 64 =
11. 1\frac{1}{4} IN = 80 MI
    Scale 1 IN = 16 MI
                                                        (Distance in inches \times 16 =
12. 1\frac{7}{16} IN = 23 MI
```

5.	Northeast (NE)	45°
6.	Southeast (SE)	135°
7.	Southwest (SW)	225°
8.	Northwest (NW)	315°
9.	360° is also 0° and is North	
10.	Clockwise	332.5°
11.	Counterclockwise	157.5°

Answers for Page 17

Ground		Ambient
Temperature	Altitude	Temperature
1. 70°	3,000 FT	59.5°
2. 70°	4,000 FT	56°
3. 83.5°	$7,000 \mathrm{FT}$	59°
4. 70°	20,000 FT	0°
5. 88.5°	3,570 FT	76°
6. 0°	2,000 FT	- 7°
7. 74.5°	11,000 FT	36°
8. 65°	12,000 FT	23°
9. 95.5°	21,000 FT	22°
10. 92°	17,000 FT	35.5°

Answers for Page 18

	Engine	Propeller		
	Speed	Speed	Ratio	
1.	3160	1580	2:1	$(3160 \div 2 =)$
2.	3400	1360	5:2	$(3400 \div 5 \times 2 =)$
3.	2175	1450	3:2	$(1450 \times 3 \div 2 =)$
4.	3750	1250	3:1	$(1250 \div 3 =)$
5.	3150	1575	2:1	$(3150 \div 1575 =)$
6.	2800	1680	1.7:1	$(2800 \div 1680 =)$
7.	1800	1350	4:3	$(1800 \div 4 \times 3 =)$
8.	3360	1470	16:7	$(1470 \times 16 - 7 =)$
9.	2910	1940	1.5:1 (3:2)	$(2910 \div 1940 =)$
10.	1920	1120	12:7	$(1120 \times 12 \div 7 =)$

NOTE: Problem #6 solution could be written 17:10 in the same manner as problem #9, i.e., 1.1:1 = 3:2.

		5. 12:05 AM	ŏ.	8. 11:47 PW			
		4. 1:17 PM	9.	9. 1:03 AM			
		5. 9:48 PM		10. 3:08 PM			
			100				
В.							
		Distance	Average GS	Time			
			3				
	1.	275 miles	110 MPH	2.5 = 2 HRS 30 MIN			
	2.	180 miles	45 MPH	4 HRS			
	3.	585 miles	130 MPH	4.5 = 4 HRS 30 MIN			
	4.	2475 miles	275 MPH	9 HRS			
	5.	1874 miles	600 MPH	$3.125 = 3 \text{ HRS } 7\frac{1}{12} \text{ MIN}$			
	6.	195 miles	65 MPH	3 HRS			
	7.	230 miles	100 MPH	2.3 = 2 HRS 18 MIN			
	8.	280 miles	120 MPH	2.33 = 2 HRS 20 MIN			
	9.	450 miles	90 MPH	5 HRS			
	10.	370 miles	95 MPH	3.9 = 3 HRS 54 MIN			
_							
C.							
		Distance	Time	Average GS			
	1.	285 miles	3 HRS	95 MPH			
	2.	780 miles	6½ HRS	120 MPH			
	3.	800 miles	5½ HRS	150 MPH			
	4.	1260 miles	4 HRS 40 MIN	270 MPH			
	5.	2875 miles	6 HRS 15 MIN	460 MPH			
	6.	675 miles	4½ HRS	150 MPH			
	7.	594 miles	3 HRS 18 MIN	180 MPH			
	8.	245 miles	2 HRS 27 MIN	100 MPH			
	9.	595 miles	3½ HRS	170 MPH			
	10.	1104 miles	4 HRS 36 MIN	240 MPH			

6. 8:41 PM

7. 10:22 AM

8. 11:47 PM

1. 4:30 AM

2. 4:19 PM

3. 12:03 AM

Answers for Page 20

D. Fuel Consumption

1. No Reserve

	Flying Time	Fuel Consumption* (GPH)	Fuel Used (Total)
1.	3.5 HRS	6 GPH	21 GAL
2.	5.33 HRS	12 GPH	64 GAL (63.96)

+ Round up to next gallon (a safety consideration)

2. With Reserve

	Flying Time	GPH	F	uel Used		Plus Reserve
1.	3.66 HRS	9 GPH	33 GAL	(32.94)	25%	44 GAL (43.92)
2.	2.5 HRS	8 GPH	$20~\mathrm{GAL}$		25%	27 GAL (26.6)
3.	2.4 HRS	5 GPH	$12\mathrm{GAL}$		25%	16 GAL
4.	4.33 HRS	12 GPH	$52\mathrm{GAL}$	(51.96)	25%	70 GAL (69.28)
5.	6.83 HRS	24 GPH	164 GAL	(163.92)	25%	219 GAL (218.56)
6.	4.0 HRS	6 GPH	$24\mathrm{GAL}$		20%	30 GAL
7.	3.5 HRS	9 GPH	$32\mathrm{GAL}$	(31.5)	20%	40 GAL (39.375)
8.	3.33 HRS	15 GPH	$50\mathrm{GAL}$	(49.95)	20%	63 GAL (62.44)
9.	8.33 HRS	24 GPH	$200~\mathrm{GAL}$	(199.2)	20%	249 GAL
10.	4.17 HRS	18 GPH	$76\mathrm{GAL}$	(75.06)	20%	94 GAL (93.83)

Answers for Page 21

B. True Airspeed Computations

	Altitude (FT)	IAS (MPH)	TAS (MHP)	Correction Factor
1.	2,000	100	104	+ 4%
2.	3,500	110	117.7	+ 7%
3.	3,000	180	190.8	+ 6%
4.	10,000	210	252	+ 20%
5.	2,700	115	121.2	+ 5.4%
6.	4,500	140	152.6	+ 9%
7.	6,000	120	134.4	+ 12%
8.	2,500	90	94.5	+ 5%
9.	7,000	230	262.2	+ 14%
10.	16,000	312	411.84	+ 32%

IAS-Indicated Airspeed

TAS-True Airspeed

CAS-Calibrated Airspeed-Not Used Here-Instrument Error Correction

7.	10		10	89
5.	95	13		82
6.	160	27		137
7.	105	5		100
8.	260	40		220

Answers for Page 22

9. 7500 FT - 135 MPH - 30 MPH Headwind (-) 135 + 15% = 155.25 - 30 = 125.25 10. 4000 FT - 120 MPH - 40 MPH Tailwind (+) 120 + 8% = 129.6 + 40 = 169.6

D. Altitude and Wind Airspeed Corrections

	Altitude (FT)	IAS (MPH)	Headwind (MPH)	Tailwind (MPH)	Groundspeed (MPH)
1.	3000	120		15	142.20
2.	4000	150	20		142.00
3.	8000	160		25	210.60
4.	3350	165		19	195.05
5.	4700	215	27		208.21
6.	6500	170	30		162.10
7.	5000	110	40		81.00
8.	7000	140		35	194.60
9.	7500	135	30		125.25
10.	4000	120		40	169.60

Answers for Page 23

Sample Problems:

- 1. Area of Wing is $105 \frac{3}{8} \text{ FT}^2$ Change fraction of FT² to IN² $1 \text{ FT}^2 = 144 \text{ IN}^2$ $144 \times \frac{3}{8} = 54 \text{ IN}^2$
- Departs 9:30 AM + 7 HRS 55 MIN Arrives 5:25 PM Eastern Time Arrives 2:25 PM Pacific Time (-3 HRS)

2. 3278 US Gallons × .8327 = 2729.6 British Gallons U.S. GAL × .8327 = British Gallons inversly British Gallons × 1.2009 = US Gallons

Answers for Page 25

GRAPHS:

1. 250 K 200-N 150 0 Т 100-S 50 50 250 150 200 100 STATUTE

Kts = .86845 × Statute MPH × 50 = 43.42 Kts × 100 = 86.85 Kts × 150 = 130.27 Kts × 200 = 173.69 Kts × 250 = 217.11 Kts

 $Vm = 19.76(d)^{1/2} = 19.76 d$

180 - 56 = 148 78 = 174 95 = 192

120-Vm100-80-60 40 20 60 20 40 50 30 70 80 90 100 10 Drag (d)

The generally accepted answer to this question would be 130°.

2. $027^{\circ} - 050^{\circ} = 337^{\circ} (0^{\circ} = 360^{\circ})$

3.	TH	VAR	MH	DEV	СН
	325°	- 10°	315°	+ 5°	320°
	165°	- 14°	151°	-4°	147°
	355°	+ 15°	0100	_ 30	0070

		,	

Latisha Ferguson
Patsy Vicks
DOT/NASSIF, RoomPL-100
Office of Training & Higher Educ.
400 7th Street, SW
Washington, DC 20590
(202)366-7500
(202)366-3786 fax

Aeronautical Center

Robert Hoppers, AAC-5 Room 356, Headquarters Bldg. POBox 25082 Oklahoma City, OK 73125 (405)680-7500 (405)954-4551 fax

Technical Center

Michele Pareene, ACM-100 Atlantic City International Airport Human Resource Management Division Atlantic City, NJ 08405 (609)485-6032 (609)485-4391 fax

Center for Mngmt. Development

Larry Hedman, CMD-373 4500 Palm Coast Parkway, SE Palm Coast, FL 32137 (904)446-7126 (904)446-7201 fax

Alaskan Region

Mary Lou Dordan, AAL-5B 222 West 7th Avenue, Box 14 Anchorage, AK 99513-7587 (907)271-5293 (907)276-7261 fax STATE: Alaska (816)426-3022 fax STATES: Iowa, Kansas, Missouri, and Nebraska

Eastern Region

Jim Szakmary, AEA-17
JFK International Airport
Federal Building #111
Jamaica, NY 11430
(718)553-1056
(718)553-0058 fax
STATES: Delaware,
District of Columbia, Maryland,
New Jersey, New York,
Pennsylvania, Virginia, and
West Virginia

Great Lakes Region

Lee Carlson, AGL-5A
O'Hare Lake Office Center
2300 East Devon Avenue
Des Plaines, IL 60018
(708)294-7042
(708)294-7184 fax
STATES: Illinois, Indiana,
Michigan, Minnesota,
North Dakota, Ohio, South Dakota,
and Wisconsin

New England

Shelia Bauer, ANE-45
12 New England Executive Park
Burlington, MA 01803
(617)238-7379
(617)238-7007 fax
STATES: Connecticut, Maine,
New Hampshire, Rhode Island,
Vermont, and Massachusetts

STATES: Colorado, Idaho, Montana, Oregon, Utah, Washington, and Wyoming

Southern Region

Joe Sidney, ASO-17.4
3400 Norman Berry Drive
East Point, GA 30344
(404)763-7500
(404)763-7178 fax
STATES: Alabama, Florida,
Georgia, Kentucky, Mississippi,
North Carolina, South Carolina,
Tennessee, Puerto Rico, and
the Virgin Islands

Southwest Region

Debra Myers, ASW-5 4400 Blue Mound Road Ft. Worth, TX 76193-0005 (817)624-5804 (817)740-3260 fax STATES: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas

Western-Pacific Region

Hank Verbais, AWP-5 POBox 92007 Worldway Postal Center Los Angeles, CA 90009 (310)297-1431 (310)297-0125 fax STATES: Arizona, California, Nevada, and Hawaii

·. t			
			,

University of North Alabama Ms. Michele R. Walker Programming Coordinator UNABox5145 Florence, AL35632-0001 (205)760-4623

University Aviation Association Mr. Gary W. Kiteley, Exec. Dir. 3410 Skyway Drive Opelika, AL 36801 (205)844-2434

Alaska

University of Alaska Fairbanks Mr. Dennis Stephens Collection Development Officer Elmer E. Rasmuson Library Fairbanks, AK 99775-1006 (907)474-6695

Alaska Pacific University Dr. Rusty Myers, Project Director 4101 University Anchorage, AK 99508 (907)564-8207

University of Alaska Anchorage Ms. Barbara Sokolov Library Director 3211 Providence Drive Anchorage, AK 99508 (907)786-1825

Arizona

Embry-Riddle Aeronautical Univ. Ms. Karen Hudson Educational Programs Coordinator 3200 N. Willow Creek Road Prescott, AZ 86301 (602)771-6673 Mr. Tony Gulielmino Aviation Department Chair 1668 South Research Loop Road Tucson, AZ 85730 (602)884-6186

Flandrau Science Center Mr. Gilbert McLaughlin University of Arizona Tucson, AZ 85721 (602)621-4515

Arkansas

Crowley's Ridge Education Service Coop. Mr. Louis Midkiff P.O.Box377 Harrisburg, AR 72432 (501)578-5426

California

Apple Valley Science & Tech. Cntr. Mr. Rick Piercy, Coordinator P.O. Box 2968, 15552 Wichita Apple Valley, CA 92307 (619)242-3514

San Jose State University Mr. Nick Milichevich, Chairman Department of Aviation 1 Washington Square San Jose, CA 95192-0081 (408)924-6580

Museum of Flying Mr. Harvey Ferer 2772 Donald Douglas Loop N. Santa Monica, CA 90405 (310)392-8822

San Bernardino Co. Super. of Sch Ms. Nancy Harlan, Coordinator Instructional Services Division 601 North E. Street San Bernardino, CA 92410-3093 (714)387-3152 Karen Tozlian 3132 E. Fairmont Fresno, CA 93725 (209)441-3672

Colorado

U.S. Space Foundation Dr. Jerry Brown Educational Director 1525 Vapor Trail Colorado Springs, CO 80916 (719)550-1000

Metropolitan State
College of Denver
Mr. Jonathan R. Burke
Assistant Professor
Aerospace Science Department
Campus Box 30
P.O.Box 173362
Denver, CO 80217-3362
(303)556-2923

Connecticut

Connecticut DOT
Bureau of Aviation and Ports
Ms. Andre J. Libert
Dir. of Marketing for Aviation
24 Wolcott Hill Road
PO Drawer A
Wethersfield, CT 06129
(203)566-4417

Delaware

Delaware Teachers Center Ms. Stephanie Wright Claymont Education Campus 3401 Green Street Claymont, DE 19703 (302)798-3806

Florida

Embry-Riddle Aeronautical Univ. Ms. Patricia Fleener-Ryan AvEd Teacher Resource Center Daytona Beach, FL 32114 (904)226-6499 15800 Northwest 42 Avenue Miami, FL 33054 (305)623-1440

Center for Mgmt. Development Mr. Larry Hedman, CMD-373 4500 Palm Coast Parkway, SE Palm Coast, FL 32137 (904)446-7126

Georgia

Conyers Middle School Ms. Viki Dennard Assistant Principal 335 Sigman Road Conyers, GA 30207-3699 (404)483-3371

Museum of Aviation at Robins AFB Ms. Joyce Carlton Director of Education P.O.Box2469 Warner Robins, GA 31099 (912)926-4242

East Cobb Middle School Mr. Charles "Chuck" Nyren 380 Holt Road Marietta, GA 30068 (404)971-8397

Hawaii

Mid-Pacific Institute Dr. Phillip R. Brieske Aviation/Space Science 2445 Kaala Street Honolulu, HI 96822 (808)973-5000

State of Hawaii
Department of Transportation
Mr. Rodney M. Kuba
Airports Division
Honolulu International Airport
Gate 29, EWA Service Court Road
Honolulu, HI 96819-1898
(808)836-6542

Dr. Peggy Baty
Associate Vice Pres. and Dean
500 Falling Springs Road
Cahokia, IL 62206
(618)337-7500

Southern Illinois University Dr. Elaine Vitello College of Technical Careers Room 222 Carbondale, IL 62901 (618) 453-8821

State of Illinois Division of Aeronautics Mr. Richard M. Ware One Langhorne Bond Drive Capital Airport Springfield, IL 62707-8415 (217) 785-8516

Indiana

Indiana College of Placement & Assessment Center Mr. Hassan Chaharlang ICPAC Hotline Director 2805 E. 10th Street Bloomington, IN 47408 (812)855-8475

Towa

The University of Northern Iowa Ms. Julie Wilkinson IRTS 222 Schindler Education Center Cedar Falls, IA 50614-0610 (319)273-2717

Kansas

Hutchinson Community College Mr. Edward E. Berger, President 1300 N. Plum Hutchinson, KS 67501 (316)665-3505 Louisiana Trans. Research Center 4101 Gourrier Avenue Baton Rouge, LA 70808 (504)767-9127

Northeast Louisiana University Mr.EmieBruce Room 103, Chemistry & Natural Sciences Building Monroe, LA 71209-0590 (318)342-1784

Maine

Kennebec Valley Tech. College Ms. Sue Doner 92 Western Avenue Fairfield, ME 04937-0020 (207) 453-9762

Biddeford School Department Ms. Sara Jane Poli Maplewood Avenue Biddeford, ME 04005 (207)282-8280

Penobscot Nation Tribal Admin. Mr. Mark Sanborn, Asst. Director Vocational Training & Education 6 River Road, Community Bldg. Indian Island, ME 04468 (207)827-7776

Northern Maine Technical Center Mr. Timothy D. Crowley Dean of Students 33 Edgemont Drive Presque Isle, ME 04769 (207)769-2461

Maryland

University of Maryland Eastern Shore Mr. Abraham D. Spinak, Director Airway Science Program Princess Anne, MD 21853-1299 (401)651-6489 One Ferncroft Road
Danvers, MA 01923
(508)762-4000 ext. 6296

Lexington Public School System Dr. Nicholas Tzimopoulos, Director Curriculum/Science Education 1557 Massachusetts Avenue Lexington, MA 02173 (617)861-2484

Westfield State College
Ms. Maureen McCartney
Director of Career Services
Ely Campus Center
Western Avenue
Westfield, MA 01086
(413) 568-3311 ext. 206

Massachusetts Aero. Commission Dr. Toby Penstlen Transportation Library 10ParkPlaza Boston, MA 02116-3966 (617)973-8000

Michigan

Oakland University
Ms. Karen Conrad, Interim Director
Aviation & Space Center
216 O'Dowd Hall
Room 216
Rochester, MI 48309-4401
(313)370-2485

Project STARS Ms. Barbara Koscak Box 450082, Building 814 Selfridge ANG Base, MI 48045 (313)466-4884 Mr. Julius Salinas Aviation Director 1900 E. Camp Street Ely, MN 55731 (218)365-7200

Mississippi

Jackson State University Dr. Harry A. Cooley, Director Airway Science Program 1400 Lynch Street Jackson, MS 39217 (601)968-2471

Stringer Aerospace Ed. Center Mr. Mark Rice PO Box 68, Old Highway 15 Stringer, MS 39481 (601)649-5566

Montana

Montana DOT Aeronautics Div. Mr. Michael D. Ferguson P.O.Box5178 Helena, MT 59601 (406)444-2506

Nebraska

University of Nebraska Dr. Brent Bowen, Director Aviation Institute 60th and Dodge Omaha, NE 68182-0508 (402)554-3424

Nebraska Dept. of Aeronautics Mr. Val J. Hruska, Aviation Speclst. P. O. Box 82088 Lincoln, NE 68501-2088 (402)471-2371

New Hampshire

New Hampshire DOT Division of Aeronautics Mr. Ronald Wanner 65 Airport Road Concord Municipal Airport Concord, NH 03301-5298 (603)271-2551 3600 Butch Cassidy Way Reno, NV 89511 (702)851-5630

New Mexico

University of New Mexico Mr. Richard S. Sanchez, Director FAA/NASA Teacher Resource Center Division of Continuing Education Albuquerque, NM 87131-4006 (505)277-2631

New Mexico State University Ms. Judy McShannon Room 103, Goddard Hall Las Cruces, NM 88003-0001 (505)646-6414

New Jersey

Northeast Curriculum Coord. Center Dr. Martha Pocsi Division of Vocational Education Crest Way Aberdeen, NJ 07747 (908)290-1900

Atlantic Community College Mr. Paul Rigby 5100 Black Horse Pike Mays Landing, NJ 08330 (609)343-5113

New York

Dowling College Dr. Albert E. Donor Provost, Executive Vice President Oakdale Long Island, NY 11769 (516)244-3200 Bowling Green State University Mr. Stephen M. Quilty, A.A.E. Assistant Professor Aerotechnology Program Technology Annex Bowling Green, OH43403-0307 (419)372-8926

Oklahoma

University of Oklahoma Dr. Lee Morris, Director Education & Aviation/Aerospace 1700 Asp Avenue Norman, OK 73037-0001 (405)325-1964

Rhode Island

Warwick Public Schools Mr. Anthony Gagliardi Warwick Career & Tech School 575 Centerville Road Warwick, RI 02886 (401)737-3300

South Dakota

Sisseton Wahpeton Comm. College Mr. Chip Harris, Director Office of Planning and Development Old Agency Box 689 Sisseton, SD 57262-0689 (605)698-3966

Tennessee

Middle Tennessee State University Dr. Wallace R. Maples, Chairman Aerospace Department East Main Street P.O.Box 67 MTSU Murfreesboro, TN 37132 (615)898-2788 Room 403, Education Building El Paso, TX 79968-0574 (915) 747-5426

Texas State Technical College Campus Librarian Aerospace Technologies 3801 Campus Drive Waco, TX 78708 (817)799-3611

Palo Alto College Mr. Bruce Hoover Aviation Department 1400 West Villarette San Antonio, TX 78224 (512)921-5162

Frontiers of Flight Museum Mr. Olin Lancaster, Director Love Field Terminal, BL-38 Dallas, TX 75235 (214)350-3600

Utah

Utah Valley Community College Dr. P.R. "Ron" Smart Director, Aviation Science Dept. 800 West 1200 South Orem, Utah 84058 (801)222-8000

Vermont

St. Johnsbury Academy Mr. John Barney Vocational Director St. Johnsbury, VT 05816 (802)748-8171

Virginia

Virginia Aviation Museum Ms. Betty P. Wilson 5701 Huntsman Road Sandston, VA 23150-1946 (804)786-1364 President 223 West Main Street Salem, WV 26426 (304)782-5234

Wisconsin

Experimental Aircraft Association Mr. Chuck Larsen EAA Aviation Center 3000 Poberezny Road Oshkosh, WI 54903-3065 (414)426-4800

Department of Transportation Bureau of Aeronautics Mr. Duane Esse 4802 Sheboygan Avenue P.O.Box7914 Madison, WI 53707-7914 (608)266-3351

University of Wisconsin-Superior Mr. Michael J. Wallschlaeger Chairman Division of Education 1800 Grand Avenue Superior, WI 54880-2898 (715)394-8309

Wyoming

Campbell County School District Media Services Ms. Jan Burke 1000 W. 8th Street Gillette, WY 82716 (307)682-2225